A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Folding Coarse-Grained Oligomer Models with PyRosetta. | LitMetric

Folding Coarse-Grained Oligomer Models with PyRosetta.

J Chem Theory Comput

Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado80309, United States.

Published: October 2022

Non-biological foldamers are a promising class of macromolecules that share similarities to classical biopolymers such as proteins and nucleic acids. Currently, designing novel foldamers is a non-trivial process, often involving many iterations of trial synthesis and characterization until folded structures are observed. In this work, we aim to tackle these foldamer design challenges using computational modeling techniques. We developed CG PyRosetta, an extension to the popular protein folding python package, PyRosetta, which introduces coarse-grained (CG) residues into PyRosetta, enabling the folding of toy CG foldamer models. Although these models are simplified, they can help explore overarching physical hypotheses about how oligomers can form. Through systematic variation of CG parameters in these models, we can investigate various folding hypotheses at the CG scale to inform the design process of new foldamer chemistries. In this study, we demonstrate CG PyRosetta's ability to identify minimum energy structures with a diverse structural search over a range of simple models, as well as two hypothesis-driven parameter scans investigating the effects of side-chain size and internal backbone angle on secondary structures. We are able to identify several types of secondary structures from single- and double-helices to sheet-like and knot-like structures. We show how side-chain size and backbone bond angle both play an important role in the structure and energetics of these toy models. Optimal side-chain sizes promote favorable packing of side chains, while specific backbone bond angles influence the specific helix type found in folded structures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.2c00519DOI Listing

Publication Analysis

Top Keywords

folded structures
8
side-chain size
8
secondary structures
8
backbone bond
8
models
6
structures
6
folding
4
folding coarse-grained
4
coarse-grained oligomer
4
oligomer models
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!