Brain mapping and neuromonitoring remain the gold standard for identifying and preserving functional neuroanatomic regions during safe, maximal brain tumor resection. Subcortical stimulation (SCS) can identify white matter tracts and approximate their distance from the leading edge of an advancing resection cavity. Dynamic (continuous) devices permitting simultaneous suction and stimulation have recently emerged as time-efficient alternatives to traditional static (discontinuous) techniques. However, the high cost, fixed cap size, and fixed tube diameter of commercially available suction devices preclude universal adoption. Our objective is to modify available suction devices into monopolar probes for subcortical stimulation mapping. We describe our technique using a novel, cost-effective, dynamic SCS technique as part of our established neuromonitoring protocol. We electrified and insulated a conventional variable suction device using an alligator clip and red rubber catheter, respectively. We adjusted the catheter's length to expose metal on both sides, effectively converting the suction device into a monopolar stimulation probe capable of cortical and subcortical monopolar stimulation that does not differ from commercially available discontinuous or continuous devices. We fashioned a dynamic SCS suction probe using inexpensive materials compatible with all suction styles and sizes. Qualitative and quantitative analysis in future prospective case series is needed to assess efficacy and utility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/21646821.2022.2121544 | DOI Listing |
Ann Clin Transl Neurol
January 2025
Department of Psychology, Binghamton University, Binghamton, New York, 13902, USA.
Episodic memory is a critical cognitive function that enables the encoding, storage, and retrieval of new information. Memory consolidation, a key stage of episodic memory, stabilizes this newly encoded information into long-lasting brain "storage." Studies using fMRI to investigate post-encoding awake rest holds promise to shed light on early, immediate consolidation mechanisms.
View Article and Find Full Text PDFSci Adv
January 2025
Experimental and Regenerative Neurosciences, The University of Western Australia, Perth, Australia.
Repetitive transcranial magnetic stimulation (rTMS) is commonly used to study the brain or as a treatment for neurological disorders, but the neural circuits and molecular mechanisms it affects remain unclear. To determine the molecular mechanisms of rTMS and the brain regions they occur in, we used spatial transcriptomics to map changes to gene expression across the mouse brain in response to two commonly used rTMS protocols. Our results revealed that rTMS alters the expression of genes related to several cellular processes and neural plasticity mechanisms across the brain, which was both brain region- and rTMS protocol-dependent.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Neurosurgery, Department of Neuroscience, Psychology, Pharmacology and Child Health, University Hospital of Careggi, University of Florence, 50134 Florence, Italy.
Navigated transcranial magnetic stimulation (nTMS) has seldom been used to study visuospatial (VS) circuits so far. Our work studied (I) VS functions in neurosurgical oncological patients by using repetitive nTMS (rnTMS), (II) the possible subcortical circuits underneath, and (III) the correspondence between nTMS and direct cortical stimulation (DCS) during awake procedures. We designed a monocentric prospective study, adopting a protocol to use rnTMS for preoperative planning, including VS functions for lesions potentially involving the VS network, including neurosurgical awake and asleep procedures.
View Article and Find Full Text PDFSci Rep
December 2024
Brain and Mind Research Program, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.
The aim of this work was to study the effect of deep brain stimulation of the subthalamic nucleus (STN-DBS) on the subnetwork of subcortical and cortical motor regions and on the whole brain connectivity using the functional connectivity analysis in Parkinson's disease (PD). The high-density source space EEG was acquired and analyzed in 43 PD subjects in DBS on and DBS off stimulation states (off medication) during a cognitive-motor task. Increased high gamma band (50-100 Hz) connectivity within subcortical regions and between subcortical and cortical motor regions was significantly associated with the Movement Disorders Society - Unified Parkinson's Disease Rating Scale (MDS-UPDRS) III improvement after DBS.
View Article and Find Full Text PDFNeurobiol Aging
December 2024
Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Shirley Ryan AbilityLab, Chicago, IL, USA.
A decline in upper limb strength is common with normal aging. However, whether age-related strength decline is paralleled by reduced excitability of descending motor pathways is unclear. The reticulospinal tract is a key subcortical pathway involved in gross motor output and exhibits increased excitability following resistance training.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!