Isoniazid is an antibiotic primarily used in clinical treatment of tuberculosis, but excessive usage can lead to serious consequences such as hepatotoxicity, neurotoxicity, and even coma and death. Therefore, it is critical to exploit a quick, facile, and acute way for isoniazid analysis. In this work, we have demonstrated an efficient electrospinning-carbonation-wet chemistry reaction-calcination process to fabricate CuO/NiO nanotubes (NTs) as a promising nanozyme for peroxidase (POD) mimicking. In virtue of the distinct tubular structure and synergy between CuO and NiO from the mechanisms of both electron transfer and hydroxyl radical generation, a remarkably improved catalytic activity is realized for the CuO/NiO NTs compared with bare CuO and NiO samples. According to the admirable POD-like property, a rapid colorimetric detection for isoniazid is accomplished with a detection limit of 0.4 μM (S/N = 3) and favorable selectivity. In addition, the sensing capability of isoniazid in a real sample is also investigated with satisfactory results. This work offers a novel tactic to fabricate high-performance nanozymes with efficient isoniazid sensing capabilities to address challenges in disease treatment efficacy and public safety monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.2c01896 | DOI Listing |
J Hazard Mater
December 2024
School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China. Electronic address:
Hydrazine, a compound recognized for its carcinogenic and genotoxic properties, presents a significant threat to human health via environmental exposure and drug metabolism. The detection of hydrazine is essential for safeguarding human health. However, a tool capable of accurately detecting hydrazine across diverse sample types, such as soil, water sources, and plant specimens contaminated by hydrazine leakage, as well as cells and live mice containing endogenously generated hydrazine from drug metabolism, is still lacking.
View Article and Find Full Text PDFArch Microbiol
November 2024
Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India.
Tuberculosis (TB) continues to be a primary worldwide health concern due to relatively ineffective treatments. The prolonged duration of conventional antibiotic therapy warrants innovative approaches to shorten treatment courses. In response to challenges, the study explores potential of Ajoene, a naturally occurring garlic extract-derived compound, for potential TB treatment.
View Article and Find Full Text PDFLangmuir
June 2024
College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, PR China.
The design of single-atom nanozymes with dual active sites to increase their activity and for the detection and degradation of contaminants is rare and challenging. In this work, a single-atom nanozyme (FeCu-NC) based on a three-dimensional porous Fe/Cu dual active site was developed as a colorimetric sensor for both the quantitative analysis of isoniazid (INH) and the efficient degradation of levofloxacin (LEV). FeCu-NC was synthesized using a salt template and freeze-drying method with a three-dimensional hollow porous structure and dual active sites (Fe-N and Cu-N).
View Article and Find Full Text PDFPhys Chem Chem Phys
May 2024
Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar 47416-95447, Iran.
In this study, the potential of aluminum nitride (h-AlN), boron nitride (h-BN) and silicon carbide (h-SiC) nanosheets as the drug delivery systems (DDS) of isoniazid (INH) was scrutinized through density functional theory (DFT) and molecular dynamic (MD) simulations. We performed DFT periodic calculations on the geometry and electronic features of nanosheets adsorbed with INH by the DFT functional (DZP/GGA-PBE) employed in the SIESTA code. In the energetically favorable model, an oxygen atom of the C-O group of the INH molecule interacts with a Si atom of the h-SiC at 2.
View Article and Find Full Text PDFJ Mater Chem B
May 2024
Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
Development of metal-free nanozymes has raised concern for their extensive applications in photocatalysis and sensing fields. As novel metal-free nanomaterials, covalent organic frameworks (COFs) have engendered intense interest in the construction of nanozymes due to their structural controllability and molecular functionality. The formation of the molecular arrangement by embedding orderly donor-acceptors (D-A) linked in the framework topology to modulate material properties for highly efficient enzyme mimicking activity is of importance but challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!