Purpose: Although recent regulations improved conditions of laboratory animals, their use remains essential in cancer research to determine treatment efficacy. In most cases, such experiments are performed on xenografted animals for which tumor volume is mostly estimated from caliper measurements. However, many formulas have been employed for this estimation and no standardization is available yet.
Methods: Using previous animal studies, we compared all formulas used by the scientific community in 2019. Data were collected from 93 mice orthotopically xenografted with human breast cancer cells. All formulas were evaluated and ranked based on correlation and lower mean relative error. They were then used in a Gompertz quantitative model of tumor growth.
Results: Seven formulas for tumor volume estimation were identified and a statistically significant difference was observed among them (ANOVA test, p < 2.10-16), with the ellipsoid formula (1/6 π × L × W × (L + W)/2) being the most accurate (mean relative error = 0.272 ± 0.201). This was confirmed by the mathematical modeling analysis where this formula resulted in the smallest estimated residual variability. Interestingly, such result was no longer valid for tumors over 1968 ± 425 mg, for which a cubic formula (L x W x H) should be preferred.
Main Findings: When considering that tumor volume remains under 1500mm3, to limit animal stress, improve tumor growth monitoring and go toward mathematic models, the following formula 1/6 π × L × W x (L + W)/2 should be preferred.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9524649 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0274886 | PLOS |
Otol Neurotol
February 2025
Department of Radiology, Yale School of Medicine, New Haven, CT.
Background: Vestibular schwannoma (VS) is a common intracranial tumor that affects patients' quality of life. Reliable imaging techniques for tumor volume assessment are essential for guiding management decisions. The study aimed to compare the ABC/2 method to the gold standard planimetry method for volumetric assessment of VS.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan.
Background: Glioblastoma is characterized by neovascularization and diffuse infiltration into the adjacent tissue. T2*-based dynamic susceptibility contrast (DSC) MR perfusion images provide useful measurements of the biomarkers associated with tumor perfusion. This study aimed to distinguish infiltrating tumors from vasogenic edema in glioblastomas using DSC-MR perfusion images.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Endoscopy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
This study enrolled 10 patients diagnosed with premalignant lesions and early-stage gastric cardia adenocarcinoma (GCA), confirmed through endoscopic examination. These patients were subjected to next-generation sequencing (NGS) using a customized 1123-gene panel to identify genetic alterations and signaling pathways. The results were compared to stage IIB to IV GCA samples from the cancer genome atlas (TCGA) and a cohort of Hong Kong patients.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.
The presence of specific genetic mutations in patients with glioblastoma multiforme (GBM) is associated with improved survival outcomes. Disruption of the DNA damage response (DDR) pathway in tumor cells enhances the effectiveness of radiotherapy drugs, while increased mutational burden following tumor cell damage also facilitates the efficacy of immunotherapy. The ATRX gene, located on chromosome X, plays a crucial role in DDR.
View Article and Find Full Text PDFJ Magn Reson Imaging
January 2025
Department of Radiology, Ålesund Hospital, Møre og Romsdal Hospital Trust, Ålesund, Norway.
Background: Deep learning-based segmentation of brain metastases relies on large amounts of fully annotated data by domain experts. Semi-supervised learning offers potential efficient methods to improve model performance without excessive annotation burden.
Purpose: This work tests the viability of semi-supervision for brain metastases segmentation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!