Dopamine Release Impairments Accompany Locomotor and Cognitive Deficiencies in Rotenone-Treated Parkinson's Disease Model Zebrafish.

Chem Res Toxicol

Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, Kansas 66045, United States.

Published: November 2022

In this work, we carried out neurochemical and behavioral analysis of zebrafish () treated with rotenone, an agent used to chemically induce a syndrome resembling Parkinson's disease (PD). Dopamine release, measured with fast-scan cyclic voltammetry (FSCV) at carbon-fiber electrodes in acutely harvested whole brains, was about 30% of that found in controls. Uptake, represented by the first order rate constant () and the half-life () determined by nonlinear regression modeling of the stimulated release plots, was also diminished. Behavioral analysis revealed that rotenone treatment increased the time required for zebrafish to reach a reward within a maze by more than 50% and caused fish to select the wrong pathway, suggesting that latent learning was impaired. Additionally, zebrafish treated with rotenone suffered from diminished locomotor activity, swimming shorter distances with lower mean velocity and acceleration. Thus, the neurochemical and behavioral approaches, as applied, were able to resolve rotenone-induced differences in key parameters. This approach may be effective for screening therapies in this and other models of neurodegeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10127151PMC
http://dx.doi.org/10.1021/acs.chemrestox.2c00150DOI Listing

Publication Analysis

Top Keywords

dopamine release
8
parkinson's disease
8
neurochemical behavioral
8
behavioral analysis
8
zebrafish treated
8
treated rotenone
8
release impairments
4
impairments accompany
4
accompany locomotor
4
locomotor cognitive
4

Similar Publications

Changes in Locomotor Activity Observed During Acute Nicotine Withdrawal Can Be Attenuated by Ghrelin and GHRP-6 in Rats.

Biomedicines

January 2025

Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szőkefalvi-Nagy Béla str. 6., 6720 Szeged, Hungary.

Ghrelin and growth hormone-releasing peptide 6 (GHRP-6) are peptides which can stimulate GH release, acting through the same receptor. Ghrelin and its receptor have been involved in reward sensation and addiction induced by natural and artificial drugs, including nicotine. The present study aimed to investigate the impacts of ghrelin and GHRP-6 on the horizontal and vertical activity in rats exposed to chronic nicotine treatment followed by acute nicotine withdrawal.

View Article and Find Full Text PDF

Contextual cues facilitate dynamic value encoding in the mesolimbic dopamine system.

Curr Biol

January 2025

Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN 55455, USA. Electronic address:

Adaptive behavior in a dynamic environmental context often requires rapid revaluation of stimuli that deviates from well-learned associations. The divergence between stable value-encoding and appropriate behavioral output remains a critical component of theories of dopamine's function in learning, motivation, and motor control. Yet, how dopamine neurons are involved in the revaluation of cues when the world changes, to alter our behavior, remains unclear.

View Article and Find Full Text PDF

Depression is one of the most common non-motor symptoms in Parkinson's disease (PD) and the hyperactivity of the lateral habenula (LHb) may contribute to depression. The present study was performed to investigate the effects and mechanisms of group I metabotropic glutamate receptors (mGluRs) in the LHb on PD-related depressive-like behaviors. Unilateral 6-hydroxydopamine lesions of the substantia nigra pars compacta (SNc) were used to establish the PD rat model.

View Article and Find Full Text PDF

Rewards are essential for motivation, decision-making, memory, and mental health. We identified the subventricular tegmental nucleus (SVTg) as a brainstem reward center. In mice, reward and its prediction activate the SVTg, and SVTg stimulation leads to place preference, reduced anxiety, and accumbal dopamine release.

View Article and Find Full Text PDF

Dopamine critically regulates neuronal excitability and promotes synaptic plasticity in the striatum, thereby shaping network connectivity and influencing behavior. These functions establish dopamine as a key neuromodulator, whose release properties have been well-studied in rodents but remain understudied in nonhuman primates. This study aims to close this gap by investigating the properties of dopamine release in macaque striatum and comparing/contrasting them to better-characterized mouse striatum, using ex vivo brain slices from male and female animals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!