There is considerable heterogeneity in the genomic drivers of lung adenocarcinoma, which has a dismal prognosis. Bioinformatics analysis was performed on lung adenocarcinoma (LUAD) datasets to establish a multi-autophagy gene model to predict patient prognosis. LUAD data were downloaded from The Cancer Genome Atlas (TCGA) database as a training set to construct a LUAD prognostic model. According to the risk score, a Kaplan-Meier cumulative curve was plotted to evaluate the prognostic value. Furthermore, a nomogram was established to predict the three-year and five-year survival of patients with LUAD based on their prognostic characteristics. Two genes (ITGB1 and EIF2AK3) were identified in the autophagy-related prognostic model, and the multivariate Cox proportional risk model showed that risk score was an independent predictor of prognosis in LUAD patients (HR=3.3, 95%CI= 2.3 to 4.6, < 0.0001). The Kaplan-Meier cumulative curve showed that low-risk patients had significantly better overall (<0.0001). The validation dataset GSE68465 further confirmed the nomogram's robust ability to assess the prognosis of LUAD patients. A prognosis model of autophagy-related genes based on a LUAD dataset was constructed and exhibited diagnostic value in the prognosis of LUAD patients. Moreover, real-time qPCR confirmed the expression patterns of EIF2AK3 and ITGB1 in LUAD cell lines. Two key autophagy-related genes have been suggested as prognostic markers for lung adenocarcinoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9550247PMC
http://dx.doi.org/10.18632/aging.204097DOI Listing

Publication Analysis

Top Keywords

luad patients
8
lung adenocarcinoma
8
prognosis luad
8
prognostic model
8
model risk
8
risk score
8
kaplan-meier cumulative
8
cumulative curve
8
luad
6
prognostic
5

Similar Publications

Interpreting Lung Cancer Health Disparity between African American Males and European American Males.

Proceedings (IEEE Int Conf Bioinformatics Biomed)

December 2024

Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, USA.

Lung cancer remains a predominant cause of cancer-related deaths, with notable disparities in incidence and outcomes across racial and gender groups. This study addresses these disparities by developing a computational framework leveraging explainable artificial intelligence (XAI) to identify both patient- and cohort-specific biomarker genes in lung cancer. Specifically, we focus on two lung cancer subtypes, Lung Adenocarcinoma (LUAD) and Lung Squamous Cell Carcinoma (LUSC), examining distinct racial and sex-specific cohorts: African American males (AAMs) and European American males (EAMs).

View Article and Find Full Text PDF

Purpose: To develop and validate a radiomics nomogram model for predicting the micropapillary pattern (MPP) in lung adenocarcinoma (LUAD) tumors of ≤2 cm in size.

Methods: In this study, 300 LUAD patients from our institution were randomly divided into the training cohort (n = 210) and an internal validation cohort (n = 90) at a ratio of 7:3, besides, we selected 65 patients from another hospital as the external validation cohort. The region of interest of the tumor was delineated on the computed tomography (CT) images, and radiomics features were extracted.

View Article and Find Full Text PDF

Background: Lung adenocarcinoma (LUAD), the most prevalent form of lung cancer. The transition from adenocarcinoma (AIS), and minimally invasive adenocarcinoma (MIA) to invasive adenocarcinoma (IAC) is not fully understood. Intratumoral microbiota may play a role in LUAD progression, but comprehensive stage-wise analysis is lacking.

View Article and Find Full Text PDF

Background: Lung adenocarcinoma (LUAD) is a highly aggressive tumor with one of the highest morbidity and mortality rates in the world. Nucleotide metabolic processes are critical for cancer development, progression, and alteration of the tumor microenvironment. However, the effect of nucleotide metabolism on LUAD remains to be thoroughly investigated.

View Article and Find Full Text PDF

Polycystic kidney and hepatic disease 1-like protein 1 (PKHD1L1) is predicted to encode a large type I transmembrane protein involved in hearing transmission and mediating cellular immunity under physiological conditions. However, its role in cancer progression, especially in lung adenocarcinoma (LUAD), has not been fully elucidated. In this study, we observed significantly lower expression of PKHD1L1 in LUAD tissues than in normal lung tissues on the basis of the integration of public datasets from the TCGA and GEO cohorts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!