Ultrafast molecular dynamics in fluids is of great importance in many biological and chemical systems. Although such dynamics in bulk liquids has been explored by various methods, experimental tools that unveil the dynamics of solvated solutes are limited. In this work, we have developed resonant optical Kerr effect spectroscopy (ROKE), which is an analogue of optical Kerr effect spectroscopy that measures the reorientational relaxation of a dilute solute in solution. By adjusting the pump and probe wavelengths at the resonant absorption band of a solute, the time response of the solute was distinguished easily from the negligible signal of the solvent. The heterodyne detection of ROKE enables the determination of reorientational relaxation time constants with an accuracy of 2.6%. The signal-to-noise ratio was high enough (average ∼26.7) to obtain an adequate signal from even a 10 μM solution. Thus, ROKE is a powerful tool to study solute dynamics with high sensitivity in a broad range of applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.2c02461 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!