A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interpretable deep learning-based hippocampal sclerosis classification. | LitMetric

Interpretable deep learning-based hippocampal sclerosis classification.

Epilepsia Open

Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea.

Published: December 2022

Objective: To evaluate the performance of a deep learning model for hippocampal sclerosis classification on the clinical dataset and suggest plausible visual interpretation for the model prediction.

Methods: T2-weighted oblique coronal images of the brain MRI epilepsy protocol performed on patients were used. The training set included 320 participants with 160 no, 100 left and 60 right hippocampal sclerosis, and cross-validation was implemented. The test set consisted of 302 participants with 252 no, 25 left and 25 right hippocampal sclerosis. As the test set was imbalanced, we took an average of the accuracy achieved within each group to measure a balanced accuracy for multiclass and binary classifications. The dataset was composed to include not only healthy participants but also participants with abnormalities besides hippocampal sclerosis in the control group. We visualized the reasons for the model prediction using the layer-wise relevance propagation method.

Results: When evaluated on the validation of the training set, we achieved multiclass and binary classification accuracy of 87.5% and 88.8% from the voting ensemble of six models. Evaluated on the test sets, we achieved multiclass and binary classification accuracy of 91.5% and 89.76%. The distinctly sparse visual interpretations were provided for each individual participant and group to suggest the contribution of each input voxel to the prediction on the MRI.

Significance: The current interpretable deep learning-based model is promising for adapting effectively to clinical settings by utilizing commonly used data, such as MRI, with realistic abnormalities faced by neurologists to support the diagnosis of hippocampal sclerosis with plausible visual interpretation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9712484PMC
http://dx.doi.org/10.1002/epi4.12655DOI Listing

Publication Analysis

Top Keywords

hippocampal sclerosis
24
multiclass binary
12
interpretable deep
8
deep learning-based
8
sclerosis classification
8
plausible visual
8
visual interpretation
8
training set
8
left hippocampal
8
test set
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!