Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Glioblastoma (GBM) therapy is severely impaired by the blood-brain barrier (BBB) and invasive tumor growth in the central nervous system. To improve GBM therapy, we herein presented a dual-targeting nanotheranostic for second near-infrared (NIR-II) fluorescence imaging-guided photo-immunotherapy. Firstly, a NIR-Ⅱ fluorophore MRP bearing donor-acceptor-donor (D-A-D) backbone was synthesized. Then, the prodrug nanotheranostics were prepared by self-assembling MRP with a prodrug of JQ1 (JPC) and T7 ligand-modified PEG-DSPE. T7 can cross the BBB for tumor-targeted delivery of JPC and MRP. JQ1 could be restored from JPC at the tumor site for suppressing interferon gamma-inducible programmed death ligand 1 expression in the tumor cells. MRP could generate NIR-II fluorescence to navigate 808 nm laser, induce a photothermal effect to trigger antigen release at the tumor site, and ultimately elicit antitumor immunogenicity. Photo-immunotherapy with JPC and MRP dual-loaded nanoparticles remarkably inhibited GBM tumor growth . The dual-targeting nanotheranostic might represent a novel nanoplatform for precise photo-immunotherapy of GBM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9513488 | PMC |
http://dx.doi.org/10.1016/j.apsb.2022.05.016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!