The aim of this study is to investigate the feasibility and efficacy of a novel biomimetic poly-l-lactide (PLLA) nanofiber membrane in repairing anterior urethral strictures from both preclinic and clinic. Biomimetic PLLA membrane was fabricated layer by layer according to the structure of human extracellular matrix. Microstructure, tensile strength, and suture retention strength were fully assessed. Before the clinical application, the safety and toxicology test of the biomimetic PLLA membrane was performed in vitro and in experimental animals. The patients underwent urethroplasty used dorsal onlay or lateral onlay technique. Then, they were followed up for 1 month, 3 months, 6 months, and then annually after the surgery. The mechanical experiments showed well property for application. Biomimetic PLLA membrane was safe according to the in vitro and animal studies. Then, a total of 25 patients (mean age 48.96 years) were included in the study from September 2016 to December 2018. After a mean follow-up of 33.56 months, 20 patients successfully treated with biomimetic PLLA membrane. Five patients (2 bulbar and 3 penile) suffered postoperational urethral stricture recurrence. None of infection or urinary fistula or any other adverse events related to the use of biomimetic PLLA membrane were observed during the follow-up period for all patients. The preliminary result confirmed the feasibility and efficacy of the biomimetic PLLA membrane as a novel material for anterior urethral repair. The long-term effects with more patients should be investigated in further studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9472005PMC
http://dx.doi.org/10.1002/btm2.10308DOI Listing

Publication Analysis

Top Keywords

biomimetic plla
24
plla membrane
24
biomimetic
8
biomimetic poly-l-lactide
8
membrane
8
nanofiber membrane
8
feasibility efficacy
8
anterior urethral
8
plla
7
patients
6

Similar Publications

Magnesium-Impregnated Membrane Promotes Bone Regeneration in Rat Skull Defect by N-Linked Glycosylation of SPARC via MagT1.

Adv Healthc Mater

December 2024

Department of Orthopaedics, Zhongshan Hospital, Fudan University, Xuhui District Fenglin Road, Shanghai, 200030, China.

Article Synopsis
  • Autograft has traditionally been the preferred method for bone surgeries, but synthetic implants are gaining popularity due to better biosafety and standardized procedures.
  • Researchers developed a magnesium-impregnated membrane that releases magnesium ions to promote bone formation and studied its properties using advanced techniques like SEM and TGA.
  • The study showed that grafted magnesium hydroxide particles integrate well in rat skull defects, highlighting their potential for creating bio-friendly, effective biomedical materials.
View Article and Find Full Text PDF

Multidrug resistance remains one of the major challenges in breast cancer research, often leading to treatment failure. To better understand this mechanism, sophisticated three-dimensional (3D) tumor models are necessary, as they offer several advantages over traditional bidimensional (2D) cultures. In this study, poly-l-lactic-acid porous scaffolds were produced using a thermally induced phase separation technique and employed as 3D models for breast cancer cell lines: MDA-MB-231, MCF-7, and its multidrug-resistant variant, MCF-7R.

View Article and Find Full Text PDF

Tissue engineering employs the use of bioactive materials to facilitate the filling and acceleration of bone defect healing, thereby introducing novel concepts to the field of in situ bone repair. Some studies have shown that periosteum plays an important role in bone regeneration and repair. In this study, biomimetic periosteum-bone scaffolds were prepared by depositing poly-L-lactic acid (PLLA) electrospun fibers on the surface of the gelatin/chitosan cryogel to mimic the bone and periosteum structure, respectively.

View Article and Find Full Text PDF

Preparation and properties of polydimethylsiloxane-regulated oriented microporous poly (-lactic acid) biomimetic bone repair materials.

Int J Biol Macromol

November 2024

State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China. Electronic address:

Despite the exceptional biocompatibility and degradability of Poly (-lactic acid) (PLLA), its brittleness, low melting strength, and poor bone induction makes it challenging to utilize for bone repair. This study used a simple, efficient solid hot drawing (SHD) method to produce high-strength PLLA, using supercritical CO (SC-CO) foaming technology to give PLLA a bionic microporous structure to enhance its toughness, while precisely controlling micropore homogeneity and improving the melt strength by using Polydimethylsiloxane (PDMS). This PDMS-regulated oriented microporous structure resembled that of natural bone, displaying a maximum tensile strength of 165.

View Article and Find Full Text PDF

This study investigates the efficacy of a novel tissue-engineered scaffold for nerve repair and functional reconstruction following injury. Utilizing stable jet electrospinning, we fabricated aligned ultrafine fibers from dopamine and poly(L-lactic acid) (PLLA), further developing a biomimetic, oriented, and electroactive scaffold comprising poly(pyrrole) (PPy), polydopamine (PDA), and PLLA through dual in situ polymerizations. The scaffold demonstrated enhanced cell adhesion and reactive oxygen species (ROS) scavenging capabilities and promoted the differentiation of mesenchymal stem cells (MSCs) into Schwann-like cells, essential for nerve regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!