Contact model for DEM simulation of compaction and sintering of all-solid-state battery electrodes.

MethodsX

Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

Published: September 2022

In this study, a discrete element method (DEM) that can simulate particle plastic deformation, sintering, and electrode compaction of all-solid-state batteries was developed. The model can simulate elastic, plastic, and viscoelastic deformations that occur particularly in mold compaction processes. When the stress exceeds the yield strength of the material, inelastic deformation occurs, which can be described by either a plastic or viscoelastic response. We applied this model to simulate mold compaction of an All-Solid-State Battery (ASSB) electrode. This study implements the following novel features:•The model was derived from the Maxwell viscoelastic model and enabled the simulation of the elastic, plastic, and viscoelastic deformation of particles in a mold.•Particle deformation and sintering are modelled by the rate expression of the equilibrium overlap.•The area and spring factors are introduced to account for numerical issues when the porosity approaches zero.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9513599PMC
http://dx.doi.org/10.1016/j.mex.2022.101857DOI Listing

Publication Analysis

Top Keywords

plastic viscoelastic
12
all-solid-state battery
8
deformation sintering
8
compaction all-solid-state
8
model simulate
8
elastic plastic
8
mold compaction
8
contact model
4
model dem
4
dem simulation
4

Similar Publications

The effect of bone relaxation on the simulated pull-off force of a cementless femoral knee implant.

J Biomech

January 2025

Radboudumc, Orthopaedic Research Lab, PO Box 9101, 6500 HB Nijmegen, the Netherlands.

Aseptic loosening is the primary cause of revision in cementless total knee arthroplasty (TKA), emphasizing the importance of strong initial stability for long-term implant success. Pre-clinical evaluations are crucial for understanding implant fixation mechanics and improving implant designs. Finite element (FE) analysis models often use linear elastic bone material models, which do not accurately reflect bone's mechanical behavior.

View Article and Find Full Text PDF

Mechanical and functional characterisation of a 3D porous biomimetic extracellular matrix to study insulin secretion from pancreatic β-cell lines.

In Vitro Model

December 2024

Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1167 - RID-AGE - Facteurs de Risque Et Déterminants Moléculaires Des Maladies Liées Au Vieillissement, F-59000 Lille, France.

Background: Extracellular matrix (ECM) is a three-dimensional (3D) structure found around cells in the tissues of many organisms. It is composed mainly of fibrous proteins, such as collagen and elastin, and adhesive glycoproteins, such as fibronectin and laminin-as well as proteoglycans, such as hyaluronic acid. The ECM performs several essential functions, including structural support of tissues, regulation of cell communication, adhesion, migration, and differentiation by providing biochemical and biomechanical cues to the cells.

View Article and Find Full Text PDF

Plastic Creep Constraint in Nylon Instrument Strings.

Materials (Basel)

January 2025

Department of Engineering, University of Cambridge, Trumpington St, Cambridge CB2 1PZ, UK.

A number of rectified nylon harp strings, having the same nominal diameter, were subjected to different sequences of applied stress steps. Each string was tested continuously for several weeks to allow sufficient time for the stretching responses to be clearly observed. Qualitatively, much of the observed behaviour was in accordance with established expectations.

View Article and Find Full Text PDF

Unified Analysis of Viscoelasticity and Viscoplasticity Using the Onsager Variational Principle.

Entropy (Basel)

January 2025

Department of Polymer Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.

This study is the application of the Onsager variational principle to viscoelasticity and viscoplasticity with the minimization of the assumptions which are popularly used in conventional approaches. The conventional approaches assume Kröner-Lee decomposition, incompressible plastic deformation, flowing rule, stress equation and so on. These assumptions have been accumulated by many researchers for a long time and have shown many successful cases.

View Article and Find Full Text PDF

Detecting surface contamination on thin thermoformed polymer plates is a critical issue for various industrial applications. Lamb waves offer a promising solution, though their effectiveness is challenged by the strong attenuation and anisotropy of the polymer plates. This issue is addressed in the context of a calcium carbonate (CaCO) layer deposited on a polypropylene (PP) plate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!