Current prosthetic limbs offer little to no sensory feedback. Developments in peripheral nerve interfaces provide opportunities to restore some level of tactile feedback that is referred to the prosthetic limb. One such method is a Regenerative Peripheral Nerve Interface (RPNI), composed of a muscle graft wrapped around a free nerve ending. Here, we characterize perception and discomfort thresholds, as well as sensitivity to stimulation through two-alternative forced choice discrimination tasks. One person with transradial amputation who had one RPNI constructed from the median nerve and two constructed from the ulnar nerve participated. Average perception thresholds across all RPNIs were between 950 and 1120 nC with variance of less than 350 nC over a 36-month period. Discomfort thresholds were from 3880 nC to 9770 nC across all RPNIs. The just noticeable difference for the Median RPNI was 520 nC, larger than either the Ulnar-1 or Ulnar-2 RPNIs (210 nC, 470 nC, respectively). We also calculated Weber fractions to compare sensitivity between different RPNIs and relate our results to previous studies. Weber fractions for each of the Median, Ulnar-1, and Ulnar-2 RPNIs were 0.134, 0.088, 0.087, respectively. This work is the first to quantify the functional stimulation range and sensitivity of RPNIs in a human participant. Future work will focus on characterizing RPNI sensation in additional individuals to determine if these findings are generalizable to the amputee population.

Download full-text PDF

Source
http://dx.doi.org/10.1109/ICORR55369.2022.9896481DOI Listing

Publication Analysis

Top Keywords

peripheral nerve
12
regenerative peripheral
8
nerve interfaces
8
discomfort thresholds
8
ulnar-1 ulnar-2
8
ulnar-2 rpnis
8
weber fractions
8
sensitivity rpnis
8
nerve
6
rpnis
6

Similar Publications

Background: Soft-tissue sarcoma involving the popliteal fossa remains challenging because it is difficult to achieve wide margins with limb salvage in this location. Adjuvant therapy is frequently necessary, and limb function can be adversely affected. We reviewed our experience with these tumors.

View Article and Find Full Text PDF

Temporal changes of spinal microglia in murine models of neuropathic pain: a scoping review.

Front Immunol

December 2024

Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.

Neuropathic pain (NP) is an ineffectively treated, debilitating chronic pain disorder that is associated with maladaptive changes in the central nervous system, particularly in the spinal cord. Murine models of NP looking at the mechanisms underlying these changes suggest an important role of microglia, the resident immune cells of the central nervous system, in various stages of disease progression. However, given the number of different NP models and the resource limitations that come with tracking longitudinal changes in NP animals, many studies fail to truly recapitulate the patterns that exist between pain conditions and temporal microglial changes.

View Article and Find Full Text PDF

The pathogenesis of long COVID (LC) still presents many areas of uncertainty. This leads to difficulties in finding an effective specific therapy. We hypothesize that the key to LC pathogenesis lies in the presence of chronic functional damage to the main anti-inflammatory mechanisms of our body: the three reflexes mediated by the vagus nerve, the hypothalamic-pituitary-adrenal (HPA) hormonal axis, and the mitochondrial redox status.

View Article and Find Full Text PDF

Leprosy is a chronic, infectious, and debilitating disorder that primarily affects the skin and peripheral nerves. The disease course may be complicated by immune-mediated reactions during or after therapy, which may further worsen nerve damage. Type II lepra reaction (T2LR) is a painful inflammatory condition with systemic features, such as fever, tender erythematous nodules, arthritis, neuritis, orchitis, lymphadenitis, and iritis.

View Article and Find Full Text PDF

Ultrasound-Guided Stellate Ganglion Block Combined with Pharmacological Treatment for Rosacea: A Report of Two Cases.

Patient Prefer Adherence

December 2024

Department of Anesthesiology, the Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, Hubei, 443002, People's Republic of China.

Rosacea is a chronic inflammatory disease primarily affecting the central facial region, significantly involving the facial blood vessels and the sebaceous gland units associated with hair follicles. The stellate ganglion block (SGB) technique can restore balance to autonomic nervous function by interrupting the impulse conduction of preganglionic and postganglionic sympathetic nerve fibers, thereby alleviating excessive peripheral blood vessel contraction, enhancing tissue blood supply, balancing hormone secretion, and modulating immune responses. SGB has demonstrated remarkable efficacy in treating various skin conditions affecting the head, face, and neck.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!