Background: Thiamine metabolism dysfunction syndrome 5 (THMD5) is a rare inherited metabolic disorder due to thiamine pyrophosphokinase 1(TPK1) deficiency, caused by mutations in TPK1. The core symptoms of the disease is acute or subacute onset encephalopathy, ataxia, muscle hypotonia, and regression of developmental milestones in early infancy, repeatedly triggered by acute infectious illness. However, we report two brothers of THMD5 with compound heterozygous for the mutations c.614-1G > A,c.224 T > A p.(Ile75Asn), but the prognosis is quite different if thiamine suppled. According to our current knowledge, the missense variant c.224 T > A p.(Ile75Asn) was not published previously.

Case Presentation: Here, we describe two affected siblings in a Chinese family, after an uneventful pregnancy to non-consanguineous and healthy parents. The older brother presented with normal development during the first 6 months of life, but developed regression of developmental milestones after, accompanied with muscle hypotonia, and chronic encephalopathy, and died at 1 year and 6 months old. The younger brother presented with acute onset encephalopathy, ataxia, muscle hypotonia, repeatedly triggered by acute infectious illness. He was compound heterozygous for the mutations c.614-1G > A,c.224 T > A p.(Ile75Asn) identified by whole exome sequencing. He was diagnosed of THMD5 when he was 11 month. Oral supplementation of thiamine 100 mg/day, the symptoms gradually disappeared. At the age of 2 years and 4 months, he stoped thiamine, his symptoms returned and were once again relieved by oral supplementation of thiamine 100 mg/day.

Conclusions: THMD5 is a rare, but treatable neurodegenerative disease, the clinical phenotype ranges from mild to severe. Massive-dose of thiamine supplementation may ameliorate the course of TPK1 deficiency. When similar clinical cases appear, gene detection is particularly important, which is conducive to early diagnosis. Treatment with thiamine while awaiting the outcome of diagnostic tests may be a good choice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9520874PMC
http://dx.doi.org/10.1186/s12883-022-02887-9DOI Listing

Publication Analysis

Top Keywords

muscle hypotonia
12
thiamine
9
thiamine metabolism
8
metabolism dysfunction
8
dysfunction syndrome
8
rare treatable
8
treatable neurodegenerative
8
neurodegenerative disease
8
thmd5 rare
8
onset encephalopathy
8

Similar Publications

Congenital muscular dystrophies and myopathies: the leading cause of genetic muscular disorders in eleven Chinese families.

BMC Musculoskelet Disord

January 2025

Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, 18 Daoshan Road, Fuzhou, 350001, China.

Background: Congenital muscular dystrophies (CMDs) and myopathies (CMYOs) are a clinically and genetically heterogeneous group of neuromuscular disorders that share common features, such as muscle weakness, hypotonia, characteristic changes on muscle biopsy and motor retardation. In this study, we recruited eleven families with early-onset neuromuscular disorders in China, aimed to clarify the underlying genetic etiology.

Methods: Essential clinical tests, such as biomedical examination, electromyography and muscle biopsy, were applied to evaluate patient phenotypes.

View Article and Find Full Text PDF

Introduction: Nemaline myopathy (NM), also known as Nemalinosis, is a rare congenital muscle disease with an incidence of 1 in 50000. It is characterized by nemaline rods in muscle fibers, leading to muscle weakness. We reported a case of NM revealed by cardiac involvement, and we highlighted the challenges in diagnosing this condition as well as its poor prognosis.

View Article and Find Full Text PDF

AMPylation is a post-translational modification involving the transfer of adenosine monophosphate (AMP) from adenosine triphosphate (ATP) to target proteins, serving as a critical regulatory mechanism in cellular functions. This study aimed to expand the phenotypic spectrum associated with mutations in the FICD gene, which encodes an adenyltransferase enzyme involved in both AMPylation and deAMPylation. A clinical evaluation was conducted on a patient presenting with a complex clinical profile.

View Article and Find Full Text PDF

Exome and Genome Sequencing to Diagnose the Genetic Basis of Neonatal Hypotonia: An International Consortium Study.

Neurology

January 2025

From the Division of Newborn Medicine (S.U.M., M.H.W., A.M.D.G.), Boston Children's Hospital; Department of Pediatrics (S.U.M., M.H.W., A.M.D.G., A.H.B., P.B.A.), Harvard Medical School; The Manton Center for Orphan Disease Research (S.U.M., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital; The Broad Institute of MIT and Harvard (S.U.M., M.H.W., A.H.B., P.B.A.), Cambridge, MA; Division of Clinical and Metabolic Genetics (G.C., R.C.), The Hospital for Sick Children; Program in Genetics and Genome Biology (G.C.,. R.C., J.J.D.), SickKids Research Institute; Department of Paediatrics (G.C., R.C., J.J.D.), Department of Molecular Genetics (G.C., A.S., J.J.D.), University of Toronto, Ontario, Canada; Division of Genetics and Genomics (C.E.F., M.H.W., A.H.B., P.B.A.), Boston Children's Hospital, MA; North East Thames Regional Genetic Service (E.W., F.M.), Great Ormond Street Hospital Trust, London, United Kingdom; Department of Genetic Counselling (A.S.), The Hospital for Sick Children, Toronto, OntarioN, Canada; Murdoch Children's Research Institute and Department of Paediatrics (J.C., S.L., Z.S.), University of Melbourne, Victoria; Discipline of Child and Adolescent Health (J.C.), Sydney Medical School, University of Sydney, New South Wales, Australia; Department of Neurology (B.T.D.), Boston Children's Hospital; Epilepsy Genetics Program (A.M.D.G.), Department of Neurology, Boston Children's Hospital, MA; Division of Neurology (J.J.D.), The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pathology (S.L.), University of Melbourne, Australia; National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre (F.M.), Great Ormond Street Institute of Child Health, University College London; Departments of Medical Genetics and Paediatrics (L.R., D.R.), University of Cambridge, United Kingdom; Division of Neonatology (D.R.), Department of Pediatrics, UCSF, San Francisco, CA; Australian Genomics Health Alliance (Z.S.); and Division of Neonatology (P.B.A.), Department of Pediatrics, University of Miami and Holtz Children's Hospital, Jackson Health System, FL.

Background And Objectives: Hypotonia is a relatively common finding among infants in the neonatal intensive care unit (NICU). Consideration of genetic testing is recommended early in the care of infants with unexplained hypotonia. We aimed to assess the diagnostic yield and overall impact of exome and genome sequencing (ES and GS).

View Article and Find Full Text PDF

Unlabelled: Allan-Herndon-Dudley syndrome is a neurodevelopmental disorder characterized by motor and intellectual disabilities. Despite its rarity, there has been a rise in interest due to ongoing research and emerging therapy suggestions. In this multicenter, retrospective, cross-sectional study, the genetic characteristics and clinical data of twenty-one cases of genetically confirmed MCT8 deficiency were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!