Background: The cranial region is a complex set of blood vessels, cartilage, nerves and soft tissues. The reconstruction of cranial defects caused by trauma, congenital defects and surgical procedures presents clinical challenges. Our previous data showed that deficiency of the proteoglycan (PG) form of dentin matrix protein 1 (DMP1-PG) could lead to abnormal cranial development. In addition, DMP1-PG was highly expressed in the cranial defect areas. The present study aimed to investigate the potential role of DMP1-PG in intramembranous ossification in cranial defect repair.
Methods: Mouse cranial defect models were established by using wild- type (WT) and DMP1-PG point mutation mice. Microcomputed tomography (micro-CT) and histological staining were performed to assess the extent of repair. Immunofluorescence assays and real-time quantitative polymerase chain reaction (RT‒qPCR) were applied to detect the differentially expressed osteogenic markers. RNA sequencing was performed to probe the molecular mechanism of DMP1-PG in regulating defect healing.
Results: A delayed healing process and an abnormal osteogenic capacity of primary osteoblasts were observed in DMP1-PG point mutation mice. Furthermore, impaired inflammatory signaling pathways were detected by using RNA transcription analysis of this model.
Conclusions: Our data indicate that DMP1-PG is an indispensable positive regulator during cranial defect healing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9524138 | PMC |
http://dx.doi.org/10.1186/s12860-022-00443-4 | DOI Listing |
Clin Oral Investig
January 2025
Fujian Key Laboratory of Oral Diseases & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, 350002, China.
Objective: Both the Masquelet technique (MT) and concentrated growth factors (CGF) reduce early graft loss and improve bone regeneration. This study aims to explore the efficacy of combining MT with CGF for mandibular defect repair by characterizing the induced membrane and assessing in vivo osteogenesis.
Materials And Methods: Three experimental groups were compared: negative control (NC), MT, and Masquelet combined with CGF (MTC).
J Neural Transm (Vienna)
January 2025
Section of Adult Neurology, Department of Internal Medicine, Chong Hua Hospital, Fuente, Cebu, Philippines.
Joubert Syndrome (JS) is a congenital cerebellar ataxia typically inherited in an autosomal recessive pattern, although rare X-linked inheritance can occur. It is characterized by hypotonia evolving into ataxia, global developmental delay, oculomotor apraxia, breathing dysregulation, and multiorgan involvement. To date, there are 40 causative genes implicated in JS, all of which encode proteins of the primary cilium.
View Article and Find Full Text PDFZhongguo Xiu Fu Chong Jian Wai Ke Za Zhi
January 2025
Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Bengbu Medical University, Bengbu Anhui, 233004, P. R. China.
Objective: To investigate the effectiveness of posterior lateral perforator flap in lower limb combined with free fibula for maxillary tissue defect repair.
Methods: Between December 2018 and December 2023, 16 patients with the maxillary malignant tumors were admitted. There were 10 males and 6 females, with an average age of 64.
J Pediatr Ophthalmol Strabismus
January 2025
This report describes the longest case of a retained metallic intraorbital foreign body with no complications and development of delayed sensory exotropia following traumatic sclopetaria in childhood. A 9-year-old girl suffered a BB gun injury to the left eye, leading to chorioretinitis sclopetaria and loss of vision. The visual acuity was 20/800 with a relative afferent pupillary defect and choroidal rupture with subretinal hemorrhage that evolved to sclopetaria over time.
View Article and Find Full Text PDFKaohsiung J Med Sci
January 2025
Department of Dermatology, Kaoshiung Chang Gung Memorial Hospital, Kaohsiung City, Taiwan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!