We identify the sodium leak channel non-selective protein (NALCN) as a key regulator of cancer metastasis and nonmalignant cell dissemination. Among 10,022 human cancers, NALCN loss-of-function mutations were enriched in gastric and colorectal cancers. Deletion of Nalcn from gastric, intestinal or pancreatic adenocarcinomas in mice did not alter tumor incidence, but markedly increased the number of circulating tumor cells (CTCs) and metastases. Treatment of these mice with gadolinium-a NALCN channel blocker-similarly increased CTCs and metastases. Deletion of Nalcn from mice that lacked oncogenic mutations and never developed cancer caused shedding of epithelial cells into the blood at levels equivalent to those seen in tumor-bearing animals. These cells trafficked to distant organs to form normal structures including lung epithelium, and kidney glomeruli and tubules. Thus, NALCN regulates cell shedding from solid tissues independent of cancer, divorcing this process from tumorigenesis and unmasking a potential new target for antimetastatic therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9729110 | PMC |
http://dx.doi.org/10.1038/s41588-022-01182-0 | DOI Listing |
Biomolecules
November 2024
Analysis of Circulating Tumor Cells, Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, 15771 Athens, Greece.
Liquid biopsy enables real-time monitoring of tumor development and response to therapy through the analysis of CTCs and ctDNA. NALCN is a sodium leak channel that is frequently involved in tumor evolution and immunity and acts as a tumor suppressor. Deletion of NALCN has been shown to increase cancer metastasis and the number of CTCs in peripheral blood.
View Article and Find Full Text PDFJ Physiol
January 2025
Centre for Discovery Brain Science, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.
Elife
December 2024
Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.
The slow-intrinsic-pacemaker dopaminergic (DA) neurons originating in the ventral tegmental area (VTA) are implicated in various mood- and emotion-related disorders, such as anxiety, fear, stress and depression. Abnormal activity of projection-specific VTA DA neurons is the key factor in the development of these disorders. Here, we describe the crucial role of the NALCN and TRPC6, non-selective cation channels in mediating the subthreshold inward depolarizing current and driving the firing of action potentials of VTA DA neurons in physiological conditions.
View Article and Find Full Text PDFJ Physiol
December 2024
University of Exeter Medical School, Hatherly Labs, Exeter, Devon, UK.
The pituitary gland produces and secretes a variety of hormones that are essential to life, such as for the regulation of growth and development, metabolism, reproduction, and the stress response. This is achieved through an intricate signalling interplay between the brain and peripheral feedback signals that shape pituitary cell excitability by regulating the ion channel properties of these cells. In addition, endocrine anterior pituitary cells spontaneously fire action potentials to regulate the intracellular calcium ([Ca]) level, an essential signalling conduit for hormonal secretion.
View Article and Find Full Text PDFBiology (Basel)
September 2024
Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
Regulating membrane potential is key to cellular function. For many animal cells, resting membrane potential is predominantly driven by a family of K2P (two-pore domain) potassium channels. These channels are commonly referred to as leak channels, as their presence results in the membrane being permeable to K ions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!