This study assessed the surface water quality in Can Tho city, Vietnam, using a combination of water quality, pollution indices, and multivariate statistical methods. Surface water samples were collected at 38 locations with a frequency of 4 times in 2020 (March, June, September, and December) and at the time of high and low tides to analyze for 18 indicators. Results showed that surface water in Can Tho city was contaminated with organic matters and microorganisms. Parameters of pH, turbidity, total suspended solids (TSS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), N-NH, and N-NO are significantly increased with low tide. Comprehensive pollution index indicated mild to moderately polluted water in March, June, and September and moderately to severely polluted water in December. Organic pollution index revealed that surface water quality in all locations was polluted with organic matters during the study period especially in March and December. The water quality index also indicated that water quality in December was mostly classified as moderate and bad. The principal component analysis indicated that surface water quality could be affected by five main sources that explain 64.40% of the total variation. This significantly caused the fluctuation of pH, temperature, turbidity, TSS, DO, BOD, COD, N-NH, P-PO, Fe, and As, which should all be the focus for future monitoring. Surface water management in Can Tho city should also emphasize on the wastewater from urbanization and agriculture, which has been recognized by the analysis to have highest contribution to organic, nutrient, and microbial pollutants in the water bodies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-022-10474-1DOI Listing

Publication Analysis

Top Keywords

water quality
32
surface water
28
tho city
16
water
13
combination water
8
quality
8
quality pollution
8
pollution indices
8
indices multivariate
8
multivariate statistical
8

Similar Publications

Access to safe water and food is a critical issue in sub-Saharan Africa, where microbial contamination poses significant health risks. Conventional water treatment and food preservation methods have limitations in addressing water safety, particularly for antibiotic-resistant bacteria and other pathogenic microorganisms. This review explores the potential application of bacteriophages as an innovative solution for water treatment and food safety in the region.

View Article and Find Full Text PDF

Groundwater is an essential drinking water source for humans. However, improper groundwater management leads to fecal contamination and waterborne diseases caused by viral pathogens. Therefore, this study aimed to investigate norovirus (NoV) contamination by conducting nationwide monitoring over five years (2019-2023).

View Article and Find Full Text PDF

Remote Sensing Techniques for Water Quality Monitoring: A Review.

Sensors (Basel)

December 2024

Department of Mechanical and Electrical Engineering, Massey University, Auckland 0632, New Zealand.

Freshwater resources are facing increasing challenges to water quality, due to factors such as population growth, human activities, climate change, and various human-made pressures. While on-site methods, as specified in the USGS water quality sampling handbook, are usually precise, they require more time, are costly, and provide data at specific points, which lacks the essential comprehensive geographic and temporal detail for water body assessment and management. Hence, conventional on-site monitoring methods are unable to provide a complete representation of freshwater systems.

View Article and Find Full Text PDF

The application of dynamic data in biomechanics is crucial; traditional laboratory-level force measurement systems are precise, but they are costly and limited to fixed environments. To address these limitations, empirical evidence supports the widespread adoption of portable force-measuring platforms, with recommendations for their ongoing development and enhancement. Taiyuan University of Technology has collaborated with KunWei Sports Technology Co.

View Article and Find Full Text PDF

This study evaluates the efficacy of twin screw melt granulation (TSMG), and hot-melt extrusion (HME) techniques in enhancing the solubility and dissolution of simvastatin (SIM), a poorly water-soluble drug with low bioavailability. Additionally, the study explores the impact of binary polymer blends on the drug's miscibility, solubility, and in vitro release profile. SIM was processed with various polymeric combinations at a 30% / drug load, and a 1:1 ratio of binary polymer blends, including Soluplus (SOP), Kollidon K12 (K12), Kollidon VA64 (KVA), and Kollicoat IR (KIR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!