Anti-infective bile acids bind and inactivate a Salmonella virulence regulator.

Nat Chem Biol

Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA.

Published: January 2023

Bile acids are prominent host and microbiota metabolites that modulate host immunity and microbial pathogenesis. However, the mechanisms by which bile acids suppress microbial virulence are not clear. To identify the direct protein targets of bile acids in bacterial pathogens, we performed activity-guided chemical proteomic studies. In Salmonella enterica serovar Typhimurium, chenodeoxycholic acid (CDCA) most effectively inhibited the expression of virulence genes and invasion of epithelial cells and interacted with many proteins. Notably, we discovered that CDCA can directly bind and inhibit the function of HilD, an important transcriptional regulator of S. Typhimurium virulence and pathogenesis. Our characterization of bile acid-resistant HilD mutants in vitro and in S. Typhimurium infection models suggests that HilD is one of the key protein targets of anti-infective bile acids. This study highlights the utility of chemical proteomics to identify the direct protein targets of microbiota metabolites for mechanistic studies in bacterial pathogens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805502PMC
http://dx.doi.org/10.1038/s41589-022-01122-3DOI Listing

Publication Analysis

Top Keywords

bile acids
20
protein targets
12
anti-infective bile
8
microbiota metabolites
8
identify direct
8
direct protein
8
bacterial pathogens
8
acids
5
bile
5
acids bind
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!