CD36 accelerates the progression of hepatocellular carcinoma by promoting FAs absorption.

Med Oncol

Department of Hepatobiliary Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368, Hanjiang Middle Road, Yangzhou, 225012, China.

Published: September 2022

CD36 is emerging as a potential strategy for cancer treatment because of its function of regulating fatty acid intake. The purpose of this study was to clarify the molecular mechanism of CD36 in the progression of HCC. TCGA database was used to analyze the relationship of CD36 with HCC. The expression of CD36 in HCC clinical samples and cell lines was detected by qRT-PCR and western blot. Huh7 cells and HCCLM3 cells were transfected and treated into different group. CCK-8 and clone formation assay were used to detect the cell proliferation ability. Wound healing and transwell experiment were used to detect the metastatic ability. HCC xenografts were constructed in nude mice by subcutaneous injection of stably transfected Huh7 cells. The expression of CD36 in HCC was detected by immunohistochemistry (IHC). The contents of phospholipids and triglycerides in HCC cells were detected by ELISA. And the content of neutral lipids in HCC cells was detected by staining with BODIPY 493/503 and DAPI dye. Then transcriptional sequencing was used to determine the downstream mechanism of CD36 in HCC, and the differentially expressed genes (DEGs) were analyzed. CD36 was upregulated in HCC. Knockdown of CD36 could suppress the proliferation and metastasis of HCC in vitro and in vivo by regulating FAs intake in HCC. In addition, the expression of AKR1C2 was suppressed by sh-CD36, and which was also involved in the regulation of FAs intake. The molecular mechanism by which CD36 accelerated the progression of HCC was to promote the expression of AKR1C2 and thus enhance fatty acids (FAs) intake.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12032-022-01808-7DOI Listing

Publication Analysis

Top Keywords

cd36 hcc
16
mechanism cd36
12
hcc
12
fas intake
12
cd36
10
molecular mechanism
8
progression hcc
8
expression cd36
8
huh7 cells
8
hcc cells
8

Similar Publications

LIX1L aggravates MASH-HCC progression by reprogramming of hepatic metabolism and microenvironment via CD36.

Pharmacol Res

January 2025

State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China. Electronic address:

Limb expression 1-like protein (LIX1L) is an essential player in liver disorders, but its function in metabolic dysfunction-associated steatohepatitis (MASH) and associated hepatocellular carcinoma (HCC) progression remains obscure. Here, we identify LIX1L as a key integrative regulator linking lipid metabolism and inflammation, adipose tissue and hepatic microenvironment, which promotes MASH progression. LIX1L significantly upregulates in MASH patients, mouse models, and palmitic acid-stimulated hepatocytes.

View Article and Find Full Text PDF

CD36-mediated accumulation of MDSCs exerts abscopal immunosuppressive responses in hepatocellular carcinoma after insufficient microwave ablation.

Biochim Biophys Acta Mol Basis Dis

December 2024

Department of Radiology, the Second Xiangya Hospital, Central South University, Changsha 410011, China. Electronic address:

The immune landscape of distant unablated tumors following insufficient microwave ablation (iMWA) in hepatocellular carcinoma (HCC) remains to be clarified. The objective of this study is to define the abscopal immune landscape in distant unablated tumor before and after iMWA for HCC. Two treatment-naive patients were recruited for tumor tissue sampling, of each with two HCC lesions.

View Article and Find Full Text PDF

Systemic loss of CD36 aggravates NAFLD-related HCC through MEK1/2-ERK1/2 signaling pathway.

Biochem Biophys Res Commun

May 2024

Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China. Electronic address:

Background & Aims: CD36, a membrane protein widely present in various tissues, is crucial role in regulating energy metabolism. The rise of HCC as a notable outcome of NAFLD is becoming more apparent. Patients with hereditary CD36 deficiency are at increased risk of NAFLD.

View Article and Find Full Text PDF

Metastasis causes most cancer-related deaths, and the role and mechanism of periostin (POSTN) in the metastasis of hepatocellular carcinoma (HCC) remain undiscovered. In this study, DEN and HTVi HCC models were performed in hepatic-specific Postn ablation and Postn knock-in mouse to reveal the role of POSTN in HCC metastasis. Furthermore, POSTN was positively correlated with circulating EPCs level and promoted EPC mobilization and tumour infiltration.

View Article and Find Full Text PDF

Cancer-associated fibroblasts contributed to hepatocellular carcinoma recurrence and metastasis via CD36-mediated fatty-acid metabolic reprogramming.

Exp Cell Res

February 2024

Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China. Electronic address:

Cancer-associated fibroblasts (CAFs) are the main components in the tumor microenvironment. Tumors activate fibroblasts from quiescent state into activated state by secreting cytokines, and activated CAFs may in turn promote tumor progression and metastasis. Therefore, studies targeting CAFs could enrich the therapeutic options for tumor treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!