A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bacterial bioburden and community structure of potable water used in the International Space Station. | LitMetric

The control of microbes in manned spaceflight is essential to reducing the risk of infection and maintaining crew health. The primary issue is ensuring the safety of a potable water system, where simultaneous monitoring of microbial abundance and community structure is needed. In this paper, we develop a flow cytometry-based counting protocol targeting cellular flavin autofluorescence as a tool for rapid monitoring of bacterial cells in water. This was successfully applied to estimate the bacterial bioburden in the potable water collected from the International Space Station. We also demonstrate the efficacy of the MinION nanopore sequencer in rapidly characterizing bacterial community structure and identifying the dominant species. These monitoring protocols' rapidity and cost effectiveness would contribute to developing sustainable real-time surveillance of potable water in spaceflight.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9522912PMC
http://dx.doi.org/10.1038/s41598-022-19320-3DOI Listing

Publication Analysis

Top Keywords

potable water
16
community structure
12
bacterial bioburden
8
international space
8
space station
8
water
5
bacterial
4
bioburden community
4
potable
4
structure potable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!