AI Article Synopsis

  • The study focuses on developing a new type of theranostic sonosensitizer that combines sonodynamic therapy (SDT) and near infrared (NIR) imaging for better cancer treatment.
  • Researchers created NIR-emitting carbon dots with special properties that enhance SDT effectiveness under low-intensity ultrasound.
  • The new sonosensitizers can target cancer cells precisely, leading to successful complete destruction of tumors with just one injection and one session of irradiation.

Article Abstract

Theranostic sonosensitizers with combined sonodynamic and near infrared (NIR) imaging modes are required for imaging guided sonodynamic therapy (SDT). It is challenging, however, to realize a single material that is simultaneously endowed with both NIR emitting and sonodynamic activities. Herein, we report the design of a class of NIR-emitting sonosensitizers from a NIR phosphorescent carbon dot (CD) material with a narrow bandgap (1.62 eV) and long-lived excited triplet states (11.4 μs), two of which can enhance SDT as thermodynamically and dynamically favorable factors under low-intensity ultrasound irradiation, respectively. The NIR-phosphorescent CDs are identified as bipolar quantum dots containing both p- and n-type surface functionalization regions that can drive spatial separation of e-h pairs and fast transfer to reaction sites. Importantly, the cancer-specific targeting and high-level intratumor enrichment of the theranostic CDs are achieved by cancer cell membrane encapsulation for precision SDT with complete eradication of solid tumors by single injection and single irradiation. These results will open up a promising approach to engineer phosphorescent materials with long-lived triplet excited states for sonodynamic precision tumor therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9523047PMC
http://dx.doi.org/10.1038/s41467-022-33474-8DOI Listing

Publication Analysis

Top Keywords

phosphorescent carbon
8
sonodynamic precision
8
precision tumor
8
tumor therapy
8
sonodynamic
5
near-infrared phosphorescent
4
carbon dots
4
dots sonodynamic
4
therapy theranostic
4
theranostic sonosensitizers
4

Similar Publications

Developing hybrid fluorescence (FL)/room-temperature phosphorescent (RTP) materials in dry-state, aqueous, and organic solvents holds paramount importance in broadening their applications. However, it is extremely challenging due to dissolved oxygen and solvent-assisted relaxation causing RTP quenching in an aqueous environment and great dependence on SiO-based materials. Herein, an efficient endogenetic carbon dot (CD) strategy within melamine-formaldehyde (MF) microspheres to activate RTP of CDs has been proposed through the pyrolysis of isophthalic acid (IPA) molecules and branched-chain intra-microspheres.

View Article and Find Full Text PDF

Recently, biomass-derived carbon dots (CDs) have attracted considerable attention in high-technology fields due to their prominent merits, including brilliant luminescence, superior biocompatibility, and low toxicity. However, most of the biomass-derived CDs only show bright fluorescence in diluted solution because of aggregation-induced quenching effect, hence cannot exhibit solid-state long-lived room-temperature phosphorescence (RTP) in ambient conditions. Herein, matrix-free solid-state RTP with an average lifetime of 0.

View Article and Find Full Text PDF

Aggregation-Induced Emission Carbon Dot-Based Multicolor Circularly Polarized Afterglow with a High Luminescence Dissymmetry Factor.

J Phys Chem Lett

December 2024

Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.

Carbon dots (CDs) with circularly polarized afterglow (CPA) materials have drawn increasing attention as cutting-edge research in the field of chiral luminescence owing to their promising applications in various fields. However, due to the weak optical activity of chiral CDs and the limited afterglow color of phosphorescent CDs, it is still a formidable challenge to construct multicolor CD-based CPA materials with a high luminescence dissymmetry factor (). Herein, positively charged aggregation-induced emission (AIE) CDs were prepared using dithiosalicylic acid and ionic liquid as precursors.

View Article and Find Full Text PDF

Room-temperature phosphorescent (RTP) carbon dots (CDs) demonstrate significant potential applications in the field of information anticounterfeiting due to their excellent optical properties. However, RTP emission of CDs remains significantly limited due to the spin-forbidden properties of triplet exciton transitions. In this work, an in situ nitrogen doping strategy was employed to design and construct strong spin-orbit coupling nitrogen-doped CDs with mesoporous silica with alumina (N-CDs@MS@AlO) RTP composites.

View Article and Find Full Text PDF

Fe-Doped 4-Aminophenylacetylene-Derived Red Emissive Polymer Carbon Dots: Synthesis and Anti-Counterfeiting Applications.

ACS Appl Mater Interfaces

December 2024

National Joint Engineering Research Center for Highly-Efficient Utilization Technology of Forestry Resource, Southwest Forestry University, Kunming 650224, P. R. China.

Phenylacetylene derivatives serve as typical monomers for polyaddition reactions. In this study, we present a straightforward one-step protocol for synthesizing polyacetylene P0 (undoped), P0.09 (doped with 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!