Analysis of change of direction performance with dominant and non-dominant leg using linear and nonlinear approaches.

Sports Biomech

Department of Health and Sports Medicine, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran.

Published: September 2022

This study was aimed to analyse the lower limb kinematics during the change of direction (COD) performance with the dominant (DL) and non-dominant (NDL) leg using linear (traditional kinematics) and nonlinear (Self Organising Map-based cluster analysis) approaches. Three 5-0-5 COD performances with the DL and three with the NDL were performed by 23 (aged 21.6 ± 2.3 years) collegiate athletes. No significant difference was observed between the COD duration, and approach speed of DL and NDL. Significantly greater ankle abductions, knee and hip external rotations were identified in COD with DL, compared to NDL (p < .001, d > 0.8). Self Organising Maps portrayed a completely different coordination pattern profile during change of direction performance with the DL and NDL. The cluster analysis illustrated similar inter-individual coordination patterning when participants turned with their DL or NDL. No visible relationship was observed in the cluster analysis of the lower limb joint angles and angular velocities. Outcomes of this study portrayed that coordination patterning (combination of joint angles and the rate of change of angles) could portray the movement patterning differences in different tasks, while a sole investigation on the joint angles or angular velocities may not reveal the underlying mechanisms of movement patterning.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14763141.2022.2112750DOI Listing

Publication Analysis

Top Keywords

change direction
12
cluster analysis
12
joint angles
12
direction performance
8
performance dominant
8
dominant non-dominant
8
leg linear
8
lower limb
8
coordination patterning
8
angles angular
8

Similar Publications

Synaptic-mitochondrial transport: mechanisms in neural adaptation and degeneration.

Mol Cell Biochem

January 2025

State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.

Synaptic plasticity is the basis for the proper functioning of the central nervous system. Synapses are the contact points between neurons and are crucial for information transmission, the structure and function of synapses change adaptively based on the different activities of neurons, thus affecting processes such as learning, memory, and neural development and repair. Synaptic activity requires a large amount of energy provided by mitochondria.

View Article and Find Full Text PDF

Capillary refill time paradoxically decreases in a blood loss shock model.

Intensive Care Med Exp

January 2025

Department of Emergency Medicine in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, 582 25, Linköping, Sweden.

Background: This study aimed to investigate whether changes in capillary refill (CR) time precede macrovascular signs of deterioration in a human model of blood loss shock. The study was conducted at the Department of Emergency Medicine in Linköping, Sweden, and involved 42 healthy volunteers aged 18-45. Participants were randomized into two provocations of applied lower body negative pressure (LBNP): a stepwise escalation protocol and a direct application protocol, to simulate gradual and acute blood loss.

View Article and Find Full Text PDF

Purpose: The landiolol and organ failure in patients with septic shock (STRESS-L study) included a pre-planned sub-study to assess the effect of landiolol treatment on inflammatory and metabolomic markers.

Methods: Samples collected from 91 patients randomised to STRESS-L were profiled for immune and metabolomic markers. A panel of pro- and anti-inflammatory cytokines were measured through commercially acquired multiplex Luminex assays and statistically analysed by individual and cluster-level analysis (patient).

View Article and Find Full Text PDF

Epigenetic regulation in hematopoietic stem cells (HSCs) research has emerged as a transformative molecular approach that enhances understanding of hematopoiesis and hematological disorders. This chapter investigates the intricate epigenetic mechanisms that control HSCs function, including deoxyribonucleic acid (DNA) methylation, histone modifications, and chromatin remodeling. It also explores the role of non-coding ribonucleic acid (RNAs) as epigenetic regulators, highlighting how changes in gene expression can occur without alterations to the DNA sequence.

View Article and Find Full Text PDF

As the Army continues to adapt to evolving mission demands and global threats, those who execute the mission - both soldiers and Department of the Army (DA) civilians - must also adapt to changing occupational demands and requirements. Occupational stress within the military community is a threat to health and wellbeing that impacts not only individual soldiers and civilian personnel, but also units, families, and the broader military community. Hardiness is an operational requirement for military success, spirituality might be a means to positively impact soldier and DA Civilian hardiness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!