Process development, techno-economic analysis and life-cycle assessment for laccase catalyzed synthesis of lignin hydrogel.

Bioresour Technol

Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea. Electronic address:

Published: November 2022

In this study, an effort has been undertaken to study process design, techno-economic analysis, and life-cycle assessment (LCA) of lignin hydrogel (LH) which has potential applications in environmental remediation. Minimum selling price (MSP) of LHs has been estimated to be 2,141 US$/ton and it lies within the range of market price (1,420-2,280 US$/ton) for commercial coagulants. Further, sensitivity analysis has been conducted and it was observed that "% efficiency of lignin hydrogel production" and "lignin price" were the most influential parameters. Uncertainty analysis has also been conducted to study the influence of volatility in the market price of lignin and total capital investment on MSP of LH. From LCA study, it was estimated that the proposed process will emit 2.8 kg CO eq. and 1.1 kg Oil eq./kg lignin hydrogel. The developed process can be utilized for lignin upgradation in biorefineries to develop economically feasible and sustainable processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2022.128028DOI Listing

Publication Analysis

Top Keywords

lignin hydrogel
16
techno-economic analysis
8
analysis life-cycle
8
life-cycle assessment
8
market price
8
analysis conducted
8
lignin
6
process
4
process development
4
development techno-economic
4

Similar Publications

Study on Highly Sensitive Capacitive Pressure Sensor Based on Silk Fibroin-Lignin Nanoparticles Hydrogel.

Biomacromolecules

January 2025

Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China.

Silk fibroin (SF) hydrogel has been proven to have excellent applications in the field of pressure sensors, but its sensing performance still needs improvement. A flexible hydrogel prepared from natural macromolecular materials was developed, and lignin nanoparticles (LNPs) were introduced during the preparation of the SF hydrogel. When LNPs account for 3% of SF, the sensing unit of the SF-LNPs hydrogel exhibits high stress sensitivity (1.

View Article and Find Full Text PDF

Conductive hydrogels have been showcased with substantial potential for soft wearable devices. However, the tedious preparation process and poor trade-off among overall properties, i.e.

View Article and Find Full Text PDF

Novel functional hydrogels based on lignin‑silver nanoparticles with adhesion, antimicrobial, antioxidant and anti-freezing properties for wound dressings and pressure strain sensors.

Int J Biol Macromol

December 2024

Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China. Electronic address:

As wound dressings and wearable electronics advance, it is critical to develop an efficacious strategy for integrating a variety of powerful functions into hydrogels. In this work, sodium lignosulfonate‑silver nanoparticles and the functional [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide structure (SBMA) are introduced into the multifunctional lignin-based hydrogel system. The sodium lignosulfonate‑silver nanoparticles, by catalyzing multiple redox reactions, facilitate the swift curing of hydrogels at room temperature.

View Article and Find Full Text PDF

Blackcurrant pomace (BCP) is an example of an annual, high-volume, under-utilized renewable resource with potential to generate chemicals, materials and bioenergy within the context of a zero-waste biorefinery. Herein, the microwave-assisted isolation, characterization and potential application of defibrillated lignocelluloses from depectinated blackcurrant pomace are reported. Depectination was achieved using citric acid (0.

View Article and Find Full Text PDF

Ultrahard and Ultraflexible Supramolecular Hydrogel with Superenergy Dissipating Structure for Biomimetic Skin.

ACS Appl Mater Interfaces

December 2024

Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning 116034, P. R. China.

How to integrate the "soft" (flexibility and self-healing properties) and "hard" (shape retention) into the supramolecular hydrogel system is an attractive challenge. In this work, a supramolecular hydrogel with an energy dissipation structure is designed and prepared for intelligent biomimetic skin. Lignin molecules with disulfide bonds of fracture and healing activities are introduced into the hydrogel system through covalent bonds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!