The applications of cryogels are defined by their porous morphology as well as mechanical properties. To achieve efficient regulation of porous properties for pectin cryogels, we selected starch as a potential polysaccharide regulator. Pectin/starch composite cryogels with different degrees of gelatinization were formulated, and two ways of starch gelatinization were considered: starch gelatinization occurred before or after pectin crosslinking during forming the hydrogel network. The results showed that high gelatinized starch (73.8 %-100.0 %) rendered pectin cryogels with denser pore morphology and higher mechanical strength. The pore diameter transferred from 160-200 μm to 40-60 μm with the degree of gelatinization, while the total porosity decreased by about 15 % and the specific surface area increased by about 100 m/g. When starch gelatinization occurred before pectin crosslinking, the hydrogen bond interactions between gelatinized starch and pectin were formed to accelerate the gelation rate of the pectin Ca-dependent network. When gelatinization occurred after pectin crosslinking, the pre-formed pectin network delayed the breakdown of the starch crystalline structure during gelatinization. The qualitative regulation of the pore morphology in pectin cryogels by incorporating starches with varying degrees of gelatinization was confirmed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2022.09.199 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!