In the current research work, the activated carbon synthesized from the plant species Delonix regia is doped with iron oxide nanoparticles and enforced as a nanosorbent for the effective extermination of Tartrazine (TAR) and Methylene blue (MB) dyes. This nanosorbent is prepared from the bark powder of the Delonix regia and subjected to chemical activation; Furthermore, the synthesized biosorbent were characterized using FTIR, SEM, TGA, and XRD to understand their functional properties and structural morphology. The optimum effectiveness adsorption of Tartrazine and Methylene blue has been investigated by using different key parameters. The conclusions have shown the highest removal percentage at a pH of 3 and 6 for Tartrazine and Methylene blue, respectively. For the various initial concentrations, the adsorption percentage reached equilibrium after 60 min and 90 min for TAR and MB. The adsorption equilibrium values were applied to various isotherms models. The adsorbent showed a higher removal capacity of 357.142 mg g and 147.058 mg g and for MB and TAR respectively. The kinetic data were best fits to pseudo second order model. The thermodynamic parameters indicated that this adsorption process was found to be spontaneous, exothermic and feasible at different temperatures. These results have shown that the prepared adsorbent is an environmentally friendly and suitable material for the elimination of TAR and MB from water systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2022.114317DOI Listing

Publication Analysis

Top Keywords

methylene blue
16
tartrazine methylene
12
activated carbon
8
delonix regia
8
iron doped
4
doped activated
4
carbon effective
4
effective removal
4
tartrazine
4
removal tartrazine
4

Similar Publications

The fabricating of extremely effective, economical, ecologically safe, and reusable nanoparticle (NP) catalysts for the removal of water pollution is urgently needed. This study, spectroscopically optimizes the process parameters for the biogenic synthesis of AgNP catalysts using Cledrdendrum infortunatum leaf extract. The optimization of several synthesis parameters was systematically studied using UV-Vis spectroscopy to identify the ideal conditions for AgNPs formation.

View Article and Find Full Text PDF

This study presents an eco-friendly, cost-effective approach for synthesizing highly efficient nanocatalysts with the help of organic waste. Iron nanoparticles (INPs) were synthesized from aqueous extracts of potato, potato peel, and potato leaf and were evaluated for their photocatalytic efficiency for the degradation of methylene blue dye. X-ray Diffraction (XRD) confirmed FeO nanoparticles cubic crystal structure with the smallest crystallite size (9.

View Article and Find Full Text PDF

Introduction: Squamous cell carcinoma (SCC) is the most common malignancy of the head and neck region. Combination therapy potentially enhances the effectiveness beyond that of each treatment alone. This study aimed to assess whether photodynamic therapy (PDT), using methylene blue as a photosensitizer in conjunction with doxorubicin, produces synergistic effects on the apoptosis of the oral squamous cell carcinoma (OSCC) cell line.

View Article and Find Full Text PDF

Objectives: A best evidence topic was written according to a structured protocol described in ICVTS. The question addressed was: "In patients with vasoplegic syndrome after cardiopulmonary bypass (CPB), does adjunctive methylene blue improve outcomes including reduced mortality, morbidity and vasopressor requirements?"

Methods: Ovid Medline was searched using a reported search algorithm. Articles that represented the best evidence to answer the clinical question were selected, tabulated and discussed.

View Article and Find Full Text PDF

Background: Sentinel lymph node biopsy (SLNB) using radioisotope tracer plus blue dye is the gold standard after neoadjuvant chemotherapy (NAC) in initially cN1 breast cancer patients, but clinical use still has limitations. This study aims to examine diagnostic performance of dual indocyanine green (ICG) and methylene blue tracing for SLNB in patients who have completed NAC for breast cancer with initially cN1 disease.

Methods: Adult women (20-80 years of age) scheduled to undergo NAC for biopsy-proven cT0-3N1M0 primary invasive breast cancer were consecutively enrolled in this prospective, multicenter, cohort study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!