The synergistic mechanism of β-lactam antibiotic removal between ammonia-oxidizing microorganisms and heterotrophs.

Environ Res

School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China; Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China. Electronic address:

Published: January 2023

Nitrifying system is an effective strategy to remove numerous antibiotics, however, the contribution of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and heterotrophs for antibiotic removal are still unclear. In this study, the mechanism of β-lactam antibiotic (cefalexin, CFX) removal was studied in a nitrifying sludge system. Results showed that CFX was synergistically removed by AOB (Nitrosomonas, played a major role) and AOA (Candidatus_Nitrososphaera) through ammonia monooxygenase-mediated co-metabolism, and by heterotrophs (Pseudofulvimonas, Hydrogenophaga, RB41, Thauera, UTCFX1, Plasticicumulans, Phaeodactylibacter) through antibiotic resistance genes (ARGs)-encoded β-lactamases-mediated hydrolysis. Regardless of increased archaeal and heterotrophic CFX removal with the upregulation of amoA in AOA and ARGs, the system exhibited poorer CFX removal performance at 10 mg/L, mainly due to the inhibition of AOB. This study provides new reference for the important roles of heterotrophs and ARGs, opening the possibilities for the application of ARGs in antibiotic biodegradation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2022.114419DOI Listing

Publication Analysis

Top Keywords

cfx removal
12
mechanism β-lactam
8
β-lactam antibiotic
8
antibiotic removal
8
antibiotic
5
removal
5
synergistic mechanism
4
removal ammonia-oxidizing
4
ammonia-oxidizing microorganisms
4
heterotrophs
4

Similar Publications

Cefixime (CFX) is a potent antibiotic against gram-positive and gram-negative bacteria that resists degradation and typical removal procedures. This research aimed to synthesize a modified AgCuFeO@GO nanoparticle electrode with anchored MnO for removing CFX by three-dimensional electrochemical oxidation. The physical and chemical characteristics of the nanocomposite were evaluated using various techniques, including FESEM, XRD, EDS-mapping, FTIR, BET, VSM, and TGA.

View Article and Find Full Text PDF

In this study, we synthesized two nanocomposites, cross-linked PVA/HKUST and PVA/ZIF-67, by integrating metal-organic frameworks (MOFs) into electrospun polyvinyl alcohol (PVA). Several characterization techniques including FTIR, XRD, ICP, SEM, TGA, UV-Vis, zeta potential, and N adsorption-desorption were employed. The adsorption performance of the composites for cefixime (CFX) removal was assessed under varying conditions such as MOF content, contact time, pH, initial CFX concentration, and temperature.

View Article and Find Full Text PDF

Aims And Objective: In this research, multicomponent reactions of cefixime, isothiocyanates, and alkyl bromides were carried out for the synthesis of new iminothiazole derivatives with high yields in water as the solvent at room temperature in the presence of catalytic amounts of Cu@KF/CP NPs as catalysts. Also, the ability of Cu@KF/Clinoptilolite nanoparticles (NPs) to adsorb and remove 4-NP and cefixime from water was investigated. The Cu@KF/Clinoptilolite nanoparticles were synthesized by employing a water extract of Petasites hybridus rhizomes.

View Article and Find Full Text PDF

Selective elimination of organic pollutants and analysis of effects and novel mechanisms of aged microplastics on wavelength-dependent UV-LED/HO system.

Water Res

December 2024

Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China. Electronic address:

The selective removal of organic pollutants and potential impact of aged microplastics (MPs) as emerging pollutants in wavelength-dependent UV-LED/HO system are not fully understood. This study found that cefalexin (CFX) degradation efficiency in UV-LED alone system was highly correlated with its UV molar absorbance (R=0.994), while in UV-LED/HO system, it was correlated with ·OH yield (R=0.

View Article and Find Full Text PDF

Conventional water treatment processes often fail to effectively remove antibacterial drugs, necessitating advanced strategies. This study presents the synthesis of novel floating, visible light-active α-NiMoO/mpg-CN/EP composites for the removal of ciprofloxacin (CFX), a widely used quinolone antibiotic, from water. These composites are easily recoverable, highly stable, and demonstrate excellent reusability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!