Extracellular DNA (exDNA) widely occurs in the environment due to release by either cell lysis or active secretion. The role of exDNA in plant-soil interactions has been investigated and inhibitory effects on the growth of conspecific individuals by their self-DNA have been reported. Transcriptome analysis in the model plant Arabidopsis thaliana showed a clear recognition by the plant roots of self- and nonself-exDNA, with inhibition occurring only after exposure to the former. In this study, an untargeted metabolomics approach was used to assess at molecular level the plant reactions to exDNA exposure. Thus, the effects on the metabolites profile of A. thaliana after exposure to self- and nonself-exDNA from plants and fish, were studied by NMR, LC-MS, chemometrics and molecular networking analyses. Results show that self-DNA significantly induces the accumulation of RNA constituents (nucleobases, ribonucleosides, dinucleotide and trinucleotide oligomers). Interestingly, AMP and GMP are found along with their cyclic analogues cAMP and cGMP, and in form of cyclic dimers (c-di-AMP and c-di-GMP). Also methylated adenosine monophosphate (m6AMP) and the dimeric dinucleotide N-methyladenylyl-(3'→5') cytidine (m6ApC) increased only in the self-DNA treatment. Such striking evidence of self-DNA effects highlights a major role of exDNA in plant sensing of its environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phytochem.2022.113453 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!