Geological disposal of radioactive waste has been recognized as the 'reference solution' to ensure the safety required for the present and future society and environment. To study the possible exposure pathways from groundwater to humans, radioactive transport modelling is used. One of the ecosystems that may play a significant role when assessing the dose conversion factor (i.e. the dose resulting from a nominal release of 1 Bq/year of each radionuclide) for humans is forest. In this paper we have developed a model of a lake-farm system with a forest component. The biosphere system used in this study represents a typical agricultural scenario in Finland, amended with a typical forest. A lake is assumed to form due to post-glacial land uplift. The main features of this future lake have been obtained from our probabilistic shoreline displacement model. Both deterministic calculations and sensitivity analysis were carried out to simulate the model. The deterministic simulation demonstrates the behaviour of the studied radionuclides (Cl, Cs, I, Np, Sr, Tc and U) and the proportions of different exposure pathways to humans. Particularly for Cs and I, forest pathways make a notable contribution to the dose conversion factor. The sensitivity analysis was done using two methods: EFAST and Sobol'. With both methods, the parameters related to the farm contribute the most to the variance of the dose conversion factor for humans. The study demonstrates that the exposure pathways related to forest products may make a considerable contribution to the dose conversion factor in a lake-farm-forest system. It is also confirmed that an advanced sensitivity analysis for a radionuclide transport and dose assessment model on such a landscape scale is feasible even with moderate computational efforts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvrad.2022.107019 | DOI Listing |
BMC Genomics
January 2025
Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
Background: Due to sexual dimorphism in growth of penaeid shrimp, all-female cultivation is desirable for the aquaculture industry. 17β-estradiol (E2) has the potential to induce the male-to-female sex reversal of decapod species. However, the mechanisms behind it remain poorly understood.
View Article and Find Full Text PDFBiol Trace Elem Res
January 2025
Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming, 650214, China.
The detrimental effects of cadmium (Cd), a hazardous heavy metal, on fish have triggered global concerns. While the ecotoxicity of Cd on fish has been investigated, the impact of Cd on muscle quality and its correlation with the gut microbiota in fish remains scarce. To comprehensively uncover Cd effects based on preliminary muscle Cd deposition, relevant studies, and ecological Cd pollution data, we exposed Labeo rohita to Cd under concentrations of 0.
View Article and Find Full Text PDFNat Commun
January 2025
Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France.
Autoimmune liver diseases (AILD) involve dysregulated CD4 T cell responses against liver self-antigens, but how these autoreactive T cells relate to liver tissue pathology remains unclear. Here we perform single-cell transcriptomic and T cell receptor analyses of circulating, self-antigen-specific CD4 T cells from patients with AILD and identify a subset of liver-autoreactive CD4 T cells with a distinct B-helper transcriptional profile characterized by PD-1, TIGIT and HLA-DR expression. These cells share clonal relationships with expanded intrahepatic T cells and exhibit transcriptional signatures overlapping with tissue-resident T cells in chronically inflamed environments.
View Article and Find Full Text PDFNeurosci Biobehav Rev
January 2025
Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy.
Breast milk (BM) is the main nutrition source for infants that plays a key role on growth and development. Human milk composition includes endogenous and exogenous substances, including endocrine disrupting chemicals (EDCs). EDCs are man-made environmental chemicals present in everyday environment and food that can disrupt the programming of endocrine signalling pathways during development, resulting in adverse effects that may not be apparent until much later in life.
View Article and Find Full Text PDFToxicol In Vitro
January 2025
School of Public Health, Nantong University, Nantong 226019, Jiangsu, China. Electronic address:
2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) belongs to the category of persistent environmental pollutants, and gestational exposure to TCDD can lead to cognitive, memory, and motor deficits, as well as altered neuron development in rodents. However, the molecular mechanisms underlying TCDD's neurotoxicity remine unclear. Neural stem cells (NSCs) possess the capacity for self-renewal and can generate various cell types within the brain, playing fundamental roles in brain development and regeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!