Tartary buckwheat [Fagopyrum tataricum (L.) Gaertn.] is a pseudocereal with strongly abiotic resistance. NACs, one of the largest plant-specific transcription factors (TFs), are involved in various stress responses. However, the characteristics and regulatory mechanisms of NAC TFs remain unclarified clearly in Tartary buckwheat (TB). In this study, it validated that salt, drought, and abscisic acid (ABA) stress significantly up-regulated the expression of NAC TF gene FtNAC31. Its coding protein has a C-terminal transactivated domain and localized in the nucleus, suggesting that FtNAC31 might play a transcriptional activation role in TB. Notably, overexpression of FtNAC31 lowered the seed germination rate upon ABA treatment and enhanced the tolerance to salt and drought stress in transgenetic Arabidopsis. Furthermore, under various stresses, the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in FtNAC31 overexpressed lines exhibited a sharp increase trend. Meanwhile, the expression levels of several stress-associated genes including RD29A, RD29B, RD22, DREB2B, NCED3, and POD1, were dramatically upregulated in lines overexpressing FtNAC31. Altogether, overproduction of FtNAC31 could enhance the resistance to salt and drought stresses in transgenic Arabidopsis, which most likely functioned in an ABA-dependent way.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2022.09.016DOI Listing

Publication Analysis

Top Keywords

salt drought
16
tartary buckwheat
12
transgenic arabidopsis
8
ftnac31
7
ftnac31 tartary
4
buckwheat nac
4
nac transcription
4
transcription factor
4
factor enhances
4
salt
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!