Impacts of adrenarcheal DHEA levels on spontaneous cortical activity during development.

Dev Cogn Neurosci

Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA. Electronic address:

Published: October 2022

Dehydroepiandrosterone (DHEA) production is closely associated with the first pubertal hormonal event, adrenarche. Few studies have documented the relationships between DHEA and functional brain development, with even fewer examining the associations between DHEA and spontaneous cortical activity during the resting-state. Thus, whether DHEA levels are associated with the known developmental shifts in the brain's idling cortical rhythms remains poorly understood. Herein, we examined spontaneous cortical activity in 71 typically-developing youth (9-16 years; 32 male) using magnetoencephalography (MEG). MEG data were source imaged and the power within five canonical frequency bands (delta, theta, alpha, beta, gamma) was computed to identify spatially- and spectrally-specific effects of salivary DHEA and DHEA-by-sex interactions using vertex-wise ANCOVAs. Our results indicated robust increases in power with increasing DHEA within parieto-occipital cortices in all frequency bands except alpha, which decreased with increasing DHEA. In the delta band, DHEA and sex interacted within frontal and temporal cortices such that with increasing DHEA, males exhibited increasing power while females showed decreasing power. These data suggest that spontaneous cortical activity changes with endogenous DHEA levels during the transition from childhood to adolescence, particularly in sensory and attentional processing regions. Sexually-divergent trajectories were only observed in later-developing frontal cortical areas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519481PMC
http://dx.doi.org/10.1016/j.dcn.2022.101153DOI Listing

Publication Analysis

Top Keywords

spontaneous cortical
16
cortical activity
16
dhea levels
12
increasing dhea
12
dhea
11
frequency bands
8
cortical
6
impacts adrenarcheal
4
adrenarcheal dhea
4
spontaneous
4

Similar Publications

Understanding the relation between cortical neuronal network structure and neuronal activity is a fundamental unresolved question in neuroscience, with implications to our understanding of the mechanism by which neuronal networks evolve over time, spontaneously or under stimulation. It requires a method for inferring the structure and composition of a network from neuronal activities. Tracking the evolution of networks and their changing functionality will provide invaluable insight into the occurrence of plasticity and the underlying learning process.

View Article and Find Full Text PDF

Neurocan regulates axon initial segment organization and neuronal activity.

Matrix Biol

January 2025

German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany. Electronic address:

The neural extracellular matrix (ECM) accumulates in the form of perineuronal nets (PNNs), particularly around fast-spiking GABAergic interneurons in the cortex and hippocampus, but also around synapses and in association with the axon initial segments (AIS) and nodes of Ranvier. Increasing evidence highlights the role of Neurocan (Ncan), a brain-specific component of ECM, in the pathophysiology of neuropsychiatric disorders like bipolar disorder and schizophrenia. Ncan localizes at PNNs, perisynaptically, and at the nodes of Ranvier and the AIS, highlighting its potential role in regulating axonal excitability.

View Article and Find Full Text PDF

Traumatic direct type carotid cavernous fistula (CCF) is an acquired arteriovenous shunt between the carotid artery and the cavernous sinus post severe craniofacial trauma or iatrogenic injury. We reported a 46-year-old woman who had developed a traumatic direct type CCF after severe head trauma with a skull base fracture and brain contusion hemorrhage. The clinical manifestations of the patient included pulsatile exophthalmos, proptosis, bruits, chemosis, and a decline in consciousness.

View Article and Find Full Text PDF

We previously reported that membrane-type 5-matrix metalloproteinase (MT5-MMP) deficiency not only reduces pathological hallmarks of Alzheimer's disease (AD) in 5xFAD (Tg) mice in vivo but also impairs interleukin-1 beta (IL-1β)-mediated neuroinflammation and Aβ production in primary Tg immature neural cell cultures after 11 days in vitro. We now investigate the effect of MT5-MMP on incipient pathogenic pathways that are activated in cortical primary cultures at 21-24 days in vitro (DIV), during which time neurons are organized into a functional mature network. Using wild-type (WT), MT5-MMP (MT5), 5xFAD (Tg), and 5xFADxMT5-MMP (TgMT5) mice, we generated primary neuronal cultures that were exposed to IL-1β and/or different proteolytic system inhibitors.

View Article and Find Full Text PDF

Emerging evidence suggests the serine protease, urokinase plasminogen activator (uPA), may play an important role in the modulation of mood and cognitive functions. Also, preliminary evidence indicates that uPA modulates BDNF activity that is known to be involved in the pathogenesis of mood disorders. However, the physiological functions of uPA in specific brain regions for mediating stress-related emotional behaviors remain to be elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!