A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Adsorbent-to-photocatalyst: Recycling heavy metal cadmium by natural clay mineral for visible-light-driven photocatalytic antibacterial. | LitMetric

Adsorbent-to-photocatalyst: Recycling heavy metal cadmium by natural clay mineral for visible-light-driven photocatalytic antibacterial.

J Colloid Interface Sci

Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China. Electronic address:

Published: January 2023

High value-added recycling of hazardous substances emerges as one of the most promising directions in current society, which can simultaneously relieve the environmental burden and obtain useful products. Here, we propose a transformation strategy from adsorbent to photocatalyst by recycling heavy metal with natural clay mineral. Sepiolite is selected as an adsorbent for removing Cd in wastewater due to its excellent adsorption properties in terms of high specific surface area and structural channels. Then, in-situ sulfidation of the adsorbed Cd is carried out, transforming it into CdS/Sep photocatalyst, which exhibits efficient photocatalytic antibacterial activity for Escherichia coli with a sterilization efficiency of 98.8% within 2 h. The intense visible light absorption of CdS and the efficient separation of photogenerated carriers render the prominent antibacterial activity. The main reactive species including superoxide radicals and hydroxyl radicals produced by CdS/Sep under visible light irradiation are diffused into the solution and attack the bacteria surrounding the photocatalysts. This work not only develops new ideas for recycling heavy metals for fabrication of efficient photocatalysts, but also provides a reference for water purification based on cost-effective natural minerals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2022.08.173DOI Listing

Publication Analysis

Top Keywords

recycling heavy
12
heavy metal
8
natural clay
8
clay mineral
8
photocatalytic antibacterial
8
antibacterial activity
8
visible light
8
adsorbent-to-photocatalyst recycling
4
metal cadmium
4
cadmium natural
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!