A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tale of COF-on-MOF Composites with Structural Regulation and Stepwise Luminescence Enhancement. | LitMetric

Tale of COF-on-MOF Composites with Structural Regulation and Stepwise Luminescence Enhancement.

ACS Appl Mater Interfaces

School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China.

Published: October 2022

Integrating metal-organic framework (MOF)-covalent organic framework (COF) allows versatile engineering of hybrid materials with properties superior to pristine components, especially COFs suffered from aggregation-caused quenching (ACQ), unlocking more possibilities to improve the luminescence of COFs. In this work, we prepared various MOF@COF composites with different COF layer thicknesses, in which stable UiO-66-NH served as the inner substrate and 1,3,5-benzenetricarboxaldehyde (BT), and 3,3'-dihydroxybenzidine (DH) were used to construct a COF layer. In addition to the conventional preparation method, we increased the ratio of BT and DH to be 1:2.5, and impressively, the morphologies of acquired UC (1:2.5) materials were quite different from the previous reticular structure and gradually extended from the spherical structure to the prickly structure with the increase of COF monomers. Remarkably, all of the UC materials possessed better luminescence properties than individual COF due to the limited COF layers. Meanwhile, UC-1 materials with an optimal COF layer displayed the strongest emission. In comparison with a single COF, the quantum yields of UC-1 and UC-1 (1:2.5) were increased nearly 7 times and 5 times, respectively. Moreover, the fluorescence of UC-1 materials was progressively enhanced via selective F sensing. This work is expected to shed light on the potential hybridization of MOF-COF with structural adjustment, morphological design, and luminescence enhancement.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c12606DOI Listing

Publication Analysis

Top Keywords

cof layer
12
luminescence enhancement
8
cof
8
uc-1 materials
8
materials
5
tale cof-on-mof
4
cof-on-mof composites
4
composites structural
4
structural regulation
4
regulation stepwise
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!