Modelling of hydrogenotrophic denitrification process in a venturi-integrated membrane bioreactor.

Environ Technol

Civil Engineering Department, Dicle University, Diyarbakir, Turkey.

Published: February 2024

The aim of this study is to model a hydrogenotrophic denitrification process in a venturi-integrated submerged membrane bioreactor (MBR) system. The MBR was operated in batch mode using feed concentrations of 100 and 150 mg NO-N/L. In contrast to most of the denitrification process models that represent the mixed culture with one composite biomass parameter, the biomass was subdivided into two main categories in this modelling study: mainly nitrate-reducing biomass and mainly nitrite-reducing biomass. The determination coefficients () in the range of 0.97-0.99 indicate that the model successfully simulates the concentrations of nitrate- and nitrite-nitrogen in the bioreactor. The maximum specific growth rate of nitrite-reducing biomass (0.06 h) was found to be higher than that of nitrate-reducing biomass (0.0002 h). Similarly, the growth yield coefficient of nitrite-reducing biomass was higher than that of nitrate-reducing biomass (0.44 vs. 0.31 g biomass/g substrate). The kinetic and stoichiometric coefficients obtained from this modelling study suggest that the limiting step determining the overall conversion rate of hydrogenotrophic denitrification process is the conversion of nitrite to nitrogen gas.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2022.2130827DOI Listing

Publication Analysis

Top Keywords

denitrification process
16
hydrogenotrophic denitrification
12
nitrate-reducing biomass
12
nitrite-reducing biomass
12
process venturi-integrated
8
membrane bioreactor
8
biomass
8
modelling study
8
higher nitrate-reducing
8
modelling hydrogenotrophic
4

Similar Publications

Population growth in coastal areas increases nitrogen inputs to receiving waterways and degrades water quality. Wetland habitats, including floodplain forests and marshes, can be effective nitrogen sinks; however, little is known about the effects of chronic point source nutrient enrichment on sediment nitrogen removal in tidally influenced coastal systems. This study characterizes enrichment patterns in two tidal systems affected by wastewater treatment facility (WWTF) effluent and assesses the impact on habitat nitrogen removal via denitrification.

View Article and Find Full Text PDF

Simultaneous partial nitrification, anammox, and denitrification (SNAD) process offers a promising method for the effective removal of carbon and nitrogen from wastewater. However, ensuring stability is a challenge. This study investigated operational parameters such as hydraulic retention time (HRT) and biomass retention to stabilize SNAD operation, transitioning from synthetic to anaerobically pre-treated municipal wastewater (APMW) in an upflow hybrid biofilm-granular reactor (UHR).

View Article and Find Full Text PDF

Transformation fate of bisphenol A in aerobic denitrifying cultures and its coercive mechanism on the nitrogen transformation pathway.

Environ Res

January 2025

State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Hong Kong Kowloon, 999077, China. Electronic address:

Bisphenol A (BPA) is a commonly used endocrine-disrupting chemical found in high levels in wastewater worldwide. Aerobic denitrification is a promising alternative to conventional nitrogen removal processes. However, the effects of BPA on this novel nitrogen removal process have rarely been reported.

View Article and Find Full Text PDF

Iron-carbon micro-electrolysis coupled to heterotrophic nitrification aerobic denitrification treating low carbon/nitrogen mariculture wastewater.

Environ Res

January 2025

Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China. Electronic address:

Considering the unsatisfied nitrogen (N) and phosphorus (P) treatment performance of mariculture wastewater caused by low carbon/nitrogen (C/N), a novel iron-carbon (Fe-C) micro-electrolysis coupled to heterotrophic nitrification aerobic denitrification (HNAD) process was proposed to enhance the N and P elimination. Results revealed that total nitrogen (TN) removal and total phosphorus (TP) removal efficiencies in Fe-C filter with HNAD (R-Fe) increased by 76.1% and 113.

View Article and Find Full Text PDF

Simultaneous nitrogen removal and phosphorus recovery in granular sludge-based partial denitrification/anammox-hydroxyapatite precipitation (PD/A-HAP) process under low C/N ratio and dissolved oxygen limitation.

Bioresour Technol

January 2025

School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Zhengzhou Key Laboratory of Water Safety and Water Ecology Technology, Zhengzhou 450001, China; Henan International Joint Laboratory of Environmental Pollution Remediation and Grain Quality Security, Zhengzhou 450001, China.

This study integrates partial denitrification/Anammox (PD/A) with hydroxyapatite (HAP) crystallization in a single reactor, achieving simultaneous nitrogen and phosphorus removal along with phosphorus recovery. By adjusting pH, sludge concentration, low COD/TN ratio, and applying moderate dissolved oxygen stress, the system operated stably and promoted the synergistic growth of HAP and biomass. Results showed a nitrogen removal efficiency (NRE) of 94.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!