Purpose: We evaluated the diagnostic performance of a clinically available deep learning-based computer-assisted diagnosis software for detecting unruptured aneurysms (UANs) using magnetic resonance angiography and assessed the functionality of the convolutional neural network (CNN) final layer score for distinguishing between UAN and infundibular dilatation (ID).
Materials And Methods: EIRL brain aneurysm (EIRL_BA) was used in this study. The subjects were 117 UAN and/or ID cases including 100 UAN lesions (average sizes of 2.56 ± 1.45 mm) and 40 ID lesions (average sizes of 1.75 ± 0.41 mm) in any of internal carotid artery, middle cerebral artery, and anterior communicating artery, and 123 normal controls. The sensitivity, specificity, and accuracy of EIRL_BA were determined for UAN and ID or UAN only. Furthermore, the relationship between the lesion category and score was examined using a linear regression analysis model, and the receiver operating characteristic (ROC) analysis was used to assess whether the scores represent UAN-like characteristics.
Results: EIRL_BA showed a total of 203 candidates (an average of 1.73/case) in UAN and/or ID cases and 98 candidates (an average of 0.80/case) in normal controls. For diagnosing either UAN/ID, EIRL_BA showed an overall sensitivity of 80%, specificity of 84.2%, and accuracy of 83.7%, resulting in the positive likelihood ratio of 5.0. For diagnosing UAN only, the overall sensitivity of 89.0, specificity of 82.6%, and accuracy of 83.2% resulting in the positive likelihood ratio of 5.1. In a linear regression analysis, the scores significantly increased in the candidates' first and second ranks in UAN (p < 0.05) but not in ID. An ROC analysis using the score for diagnosing UAN showed an area under the curve of 0.836.
Conclusion: EIRL_BA is applicable for detecting small UAN, and the CNN's final layer scores may be an effective index for discriminating UAN and ID and representing the likelihood of UAN.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9889446 | PMC |
http://dx.doi.org/10.1007/s11604-022-01341-7 | DOI Listing |
Acta Otolaryngol
January 2025
Department of Otorhinolaryngology, Institute of Science Tokyo, Tokyo, Japan.
Background: Recent advances in artificial intelligence have facilitated the automatic diagnosis of middle ear diseases using endoscopic tympanic membrane imaging.
Aim: We aimed to develop an automated diagnostic system for middle ear diseases by applying deep learning techniques to tympanic membrane images obtained during routine clinical practice.
Material And Methods: To augment the training dataset, we explored the use of generative adversarial networks (GANs) to produce high-quality synthetic tympanic images that were subsequently added to the training data.
Sensors (Basel)
January 2025
Department of Electrical and Information Engineering (DEI), Polytechnic University of Bari, Via E. Orabona, 4, 70125 Bari, Italy.
Abnormal locomotor patterns may occur in case of either motor damages or neurological conditions, thus potentially jeopardizing an individual's safety. Pathological gait recognition (PGR) is a research field that aims to discriminate among different walking patterns. A PGR-oriented system may benefit from the simulation of gait disorders by healthy subjects, since the acquisition of actual pathological gaits would require either a higher experimental time or a larger sample size.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
With the digital transformation of the manufacturing industry, data monitoring and collecting in the manufacturing process become essential. Pointer meter reading recognition (PMRR) is a key element in data monitoring throughout the manufacturing process. However, existing PMRR methods have low accuracy and insufficient robustness due to issues such as blur, uneven illumination, tilt, and complex backgrounds in meter images.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai 519031, China.
Electroencephalogram (EEG) signals are important bioelectrical signals widely used in brain activity studies, cognitive mechanism research, and the diagnosis and treatment of neurological disorders. However, EEG signals are often influenced by various physiological artifacts, which can significantly affect data analysis and diagnosis. Recently, deep learning-based EEG denoising methods have exhibited unique advantages over traditional methods.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
Deep learning-based morphometric analysis of zebrafish is widely utilized for non-destructively identifying abnormalities and diagnosing diseases. However, obtaining discriminative and continuous organ category decision boundaries poses a significant challenge by directly observing zebrafish larvae from the outside. To address this issue, this study simplifies the organ areas to polygons and focuses solely on the endpoint positioning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!