Organophosphorus pesticides (OPs) are a chemically diverse class of insecticides that inhibit acetylcholinesterase (AChE). Many OPs require bioactivation to their active oxon form via cytochrome P450 to effectively inhibit AChE. OP toxicity can be mitigated by detoxification reactions performed by carboxylesterase and paraoxonase. The relative extent of bioactivation to detoxification varies among individuals and between species, leading to differential susceptibility to OP toxicity. Because of these species differences, it is imperative to characterize OP metabolism in model systems used to assess OP toxicity. We have shown that the asexual freshwater planarian Dugesia japonica is a suitable model to assess OP neurotoxicity and developmental neurotoxicity via rapid, automated testing of adult and developing organisms in parallel using morphological and behavioral endpoints. D. japonica has two cholinesterase enzymes with intermediate properties between AChE and butyrylcholinesterase that are sensitive to OP inhibition. Here, we demonstrate that D. japonica contains the major OP metabolic machinery to be a relevant model for OP neurotoxicity studies. Adult and regenerating D. japonica can bioactivate chlorpyrifos and diazinon into their respective oxons. Significant AChE inhibition was only observed after in vivo metabolic activation but not when the parent OPs were directly added to planarian homogenate using the same concentrations and timing. Using biochemical assays, we found that D. japonica has both carboxylesterase (24 nmol/(min*mg protein)) and paraoxonase (60 pmol/(min*mg protein)) activity. We show that planarian carboxylesterase activity is distinct from cholinesterase activity using benzil and tacrine. These results further support the use of D. japonica for OP toxicity studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729609PMC
http://dx.doi.org/10.1007/s00204-022-03387-yDOI Listing

Publication Analysis

Top Keywords

bioactivation detoxification
8
organophosphorus pesticides
8
japonica
6
detoxification organophosphorus
4
pesticides freshwater
4
freshwater planarians
4
planarians shares
4
shares similarities
4
similarities humans
4
humans organophosphorus
4

Similar Publications

Antioxidative and mineral-binding food-derived peptides: Production, functions, metal complexation conditions, and digestive fate.

Food Res Int

January 2025

Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Medicine, Duy Tan University, Da Nang 550000, Viet Nam. Electronic address:

The discovery of food-derived biopeptides is becoming increasingly prevalent in the scientific community. Some peptides possess multiple biological functions that can confer health benefits through various mechanisms following ingestion. The present review targets food-derived antioxidant and mineral-binding peptides (AMBPs) including their production procedure i.

View Article and Find Full Text PDF

The fruit of Thunb. (HD) is renowned for its medicinal properties and is rich in bioactive compounds, traditionally used in East Asian medicine as a natural antidote for alcohol intoxication. A randomized, double-blind, crossover, placebo (PLA)-controlled clinical trial was conducted to compare the effects of beverages containing 0.

View Article and Find Full Text PDF

The Detoxification Effects of Melatonin on Aflatoxin-Caused Toxic Effects and Underlying Molecular Mechanisms.

Antioxidants (Basel)

December 2024

National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.

Aflatoxins (AFTs) are a form of mycotoxins mainly produced by and , which are common contaminants in various agricultural sources such as feed, milk, food, and grain crops. Aflatoxin B1 (AFB1) is the most toxic one among all AFTs. AFB1 undergoes bioactivation into AFB1-8,9-epoxide, then leads to diverse harmful effects such as neurotoxicity, carcinogenicity, hepatotoxicity, reproductive toxicity, nephrotoxicity, and immunotoxicity, with specific molecular mechanisms varying in different pathologies.

View Article and Find Full Text PDF

Exploring the health benefits of food bioactive compounds from a perspective of NLRP3 inflammasome activation: an insight review.

Crit Rev Food Sci Nutr

January 2025

Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.

The food industry has been focusing on food bioactive compounds with multiple physiological and immunological properties that benefit human health. These bioactive compounds, including polyphenols, flavonoids, and terpenoids, have great potential to limit inflammatory responses especially NLRP3 inflammasome activation, which is a key innate immune platform for inflammation. Current studies have revealed numerous food bioactive compounds with promising activities for unraveling immune metabolic disorders and excessive inflammatory responses by directly and indirectly regulating the NLRP3 inflammasome activation.

View Article and Find Full Text PDF

Glutathione (GSH) is a bioactive tripeptide with important physiological functions in animals, plants, and microorganisms. GSH participates in various biochemical reactions in vivo and is known for its antioxidant, anti-allergy, and detoxification properties. This study introduces an innovative photoelectrochemical (PEC) method for GSH detection, leveraging a fluorine-doped tin oxide (FTO) electrode enhanced by TiO nanoflowers and graphitic carbon nitride quantum dots (g-CNQDs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!