High pressure or strain is an effective strategy for generating phase transformations in van der Waals (vdW) layered materials without introducing defects, but this approach remains difficult to perform consistently. We present a scalable and facile method for achieving phase transformation in vdW materials, wherein solid vdW materials are subject to internal thermal stress within a molten metal mantle as it undergoes cooling. This internal thermal stress is principally the product of differential thermal expansion between mantle and core and can be tuned by the mantle material and temperature conditions. We validated this approach by achieving phase transformation of red phosphorus to black phosphorus, and metallic 1T'- to semiconducting 2H-MoTe crystals. We further demonstrate quantum electronic phase transformation of suppressed charge density wave in TiSe by means of electron-phonon coupling using the same system.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.2c07150DOI Listing

Publication Analysis

Top Keywords

phase transformation
16
internal thermal
12
van der
8
der waals
8
layered materials
8
achieving phase
8
vdw materials
8
thermal stress
8
phase
5
thermal stress-driven
4

Similar Publications

Deep learning enhanced quantum holography with undetected photons.

Photonix

December 2024

Department of Biomedical Engineering, Texas A&M University, College Station, 77843 TX USA.

Unlabelled: Holography is an essential technique of generating three-dimensional images. Recently, quantum holography with undetected photons (QHUP) has emerged as a groundbreaking method capable of capturing complex amplitude images. Despite its potential, the practical application of QHUP has been limited by susceptibility to phase disturbances, low interference visibility, and limited spatial resolution.

View Article and Find Full Text PDF

This study aims to evaluate cerebrospinal fluid (CSF) flow dynamics within ventricles, and the subarachnoid space (SAS) using the velocity selective spin labeling (VSSL) MRI method with Fourier-transform-based velocity selective inversion preparation. The study included healthy volunteers who underwent MRI scanning with specific VSSL parameters optimized for CSF flow quantification. The VSSL sequence was calibrated against phase-contrast MRI (PC-MRI) to ensure accurate flow velocity measurements.

View Article and Find Full Text PDF

Dual-Substitution Strategy Utilizing Cation Chelation and Assembly Process to Realize Solid Solution Reaction in Layered Oxide Cathode for Na-Ion Batteries.

Small

December 2024

School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, P. R. China.

NaNiMnO (NNM) is regarded as a promising cathode material for Na-ion batteries (NIBs), but suffers from irreversible phase transformations characterized by multiple voltage plateaus, resulting in poor cycle stability and inferior rate capability. To address these issues, the NaNiCuZnMnO (NNCZM) cathode material is synthesized by a cation chelation and reassembly process, which can promote a more uniform element distribution than that prepared by the solid-state method (S-NNCZM), resulting in better Na diffusion kinetics and rate capability. Replacing Ni with a small amount of Zn prevents the P2-O2 phase transformation, while replacing Ni with an appropriate amount of electrochemically active Cu eliminates Na-vacancy ordering and additionally contributes to capacity.

View Article and Find Full Text PDF

Mn-rich disordered rocksalt materials with Li-excess (DRX) materials have emerged as a promising class of earth-abundant and energy-dense next-generation cathode materials for lithium-ion batteries. Recently, an electrochemical transformation to a spinel-like "δ" phase has been reported in Mn-rich DRX materials, with improved capacity, rate capability, and cycling stability compared with previous DRX compositions. However, this transformation unfolds slowly over the course of cycling, complicating the development and understanding of these materials.

View Article and Find Full Text PDF

Piceatannol, a stilbene compound, undergoes a comprehensive phase II metabolism mediated by UDP-glucuronosyltransferases (UGTs) and sulfotransferases (SULTs) in humans. Despite their well-documented beneficial effects on health, their detailed pharmacokinetic fate, including the metabolite structure and properties, is poorly understood. Thus, we determined the structure of seven glucuronides and six sulfates transformed from piceatannol and its methylated derivatives in recombinant yeast cells expressing UGTs or SULTs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!