Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The attainment of "true reinforcement" in a composite and harnessing of the associated beneficial effects have been demonstrated here through the development of faceted crystalline Sb particles having the interiors reinforced with reduced graphene oxide (rGO). Such a unique and "near-ideal" micro/nanocomposite architecture has been achieved via a facile/cost-effective route by facilitating heterogeneous nucleation/growth of Sb-oxide particles on/around dispersed rGO sheets upon incorporation of the same directly into the precursor suspension, followed by the reduction of Sb-oxide to Sb, in intimate contact with the rGO, during the subsequent single heat-treatment step. As a potential anode material for Na-ion batteries, the as-developed Sb/rGO composite exhibits a reversible Na-storage capacity of ∼550 mAh/g (@ 0.2 A/g) and a fairly high first cycle Coulombic efficiency (CE) of ∼79%, with the good reversibility being attributed to the coarse particle size of Sb and encompassing of rGO sheets inside the Sb particles. Furthermore, despite the coarse particle size, the Sb/rGO-based electrode exhibits outstanding cyclic stability, with negligible capacity fade up to 150 cycles (viz., ∼97% capacity retention), and rate capability, with >86% capacity being obtained upon raising the current density from 0.1 to 2 A/g, resulting in a capacity of ∼490 mAh/g, even at 2 A/g.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c11165 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!