Optical spectroscopy plays an important role in disease detection. Improving the sensitivity and specificity of spectral detection has great importance in the development of accurate diagnosis. The development of artificial intelligence technology provides a great opportunity to improve the detection accuracy through machine learning methods. In this Perspective, we focus on the combination of machine learning methods with the optical spectroscopy methods widely used for disease detection, including absorbance, fluorescence, scattering, FTIR, terahertz, . By comparing the spectral analysis with different machine learning methods, we illustrate that the support vector machine and convolutional neural network are most effective, which have potential to further improve the classification accuracy to distinguish disease subtypes if these machine learning methods are used. This Perspective broadens the scope of optical spectroscopy enhanced by machine learning and will be useful for the development of disease detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.2c02193 | DOI Listing |
Comput Methods Biomech Biomed Engin
January 2025
Department of Gastroenterolgy, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China.
The global rise in Crohn's Disease (CD) incidence has intensified diagnostic challenges. This study identified circadian rhythm-related biomarkers for CD using datasets from the GEO database. Differentially expressed genes underwent Weighted Gene Co-Expression Network Analysis, with 49 hub genes intersected from GeneCards data.
View Article and Find Full Text PDFArch Pathol Lab Med
January 2025
the Department of Pathology, The Ohio State University, Columbus (Parwani).
Context.—: Generative artificial intelligence (AI) has emerged as a transformative force in various fields, including anatomic pathology, where it offers the potential to significantly enhance diagnostic accuracy, workflow efficiency, and research capabilities.
Objective.
Anal Sci
January 2025
Department of Analytical Chemistry, Faculty of Pharmacy, Near East University, TRNC, Mersin 10, 99138, Nicosia, Turkey.
In this research, a green approach utilizing deep eutectic solvent liquid-liquid microextraction is combined with smartphone digital image colorimetry for the determination of boron in nut samples. A smartphone camera was used to capture the image of the analyte extract located in a custom-made colorimetric box. Using ImageJ software, the images were split into RGB channels, with the green channel identified as the optimum.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
LEESU, Ecole des Ponts Paris Tech, UPEC, AgroParisTech, F-77455 Marne-la-Vallée, Paris, France.
Urban reservoirs are frequently exposed to impacts from high population density, polluting activities, and the absence of environmental control measures and monitoring. In this study, we investigated the use of satellite imagery to assess restoration measures and support decision-making in a hypereutrophic urban reservoir. Since 2016, Lake Pampulha (Brazil) has undergone restoration measures, including the application of Phoslock®, to mitigate its poor water quality conditions.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Thyroid Breast Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
Objective: Despite the identification of various prognostic factors for anaplastic thyroid carcinoma (ATC) patients over the years, a precise prognostic tool for these patients is still lacking. This study aimed to develop and validate a prognostic model for predicting survival outcomes for ATC patients using random survival forests (RSF), a machine learning algorithm.
Methods: A total of 1222 ATC patients were extracted from the Surveillance, Epidemiology, and End Results (SEER) database and randomly divided into a training set of 855 patients and a validation set of 367 patients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!