The spatial aggregation of species pairs often increases with the ecological similarity of the species involved. However, the way in which environmental conditions and anthropogenic activity affect the relationship between spatial aggregation and ecological similarity remains unknown despite the potential for spatial associations to affect species interactions, ecosystem function, and extinction risk. Given that human disturbance has been shown to both increase and decrease spatial associations among species pairs, ecological similarity may have a role in mediating these patterns. Here, we test the influences of habitat diversity, primary productivity, human population density, and species' ecological similarity based on functional traits (i.e., functional trait similarity) on spatial associations among tropical forest mammals. Large mammals are highly sensitive to anthropogenic change and therefore susceptible to changes in interspecific spatial associations. Using two-species occupancy models and camera trap data, we quantified the spatial overlap of 1216 species pairs from 13 tropical forest protected areas around the world. We found that the association between ecological similarity and interspecific species associations depended on surrounding human density. Specifically, aggregation of ecologically similar species was more than an order of magnitude stronger in landscapes with the highest human density compared to those with the lowest human density, even though all populations occurred within protected areas. Human-induced changes in interspecific spatial associations have been shown to alter top-down control by predators, increase disease transmission and increase local extinction rates. Our results indicate that anthropogenic effects on the distribution of wildlife within protected areas are already occurring and that impacts on species interactions, ecosystem functions, and extinction risk warrant further investigation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9827980 | PMC |
http://dx.doi.org/10.1111/gcb.16434 | DOI Listing |
J Bone Miner Res
December 2024
Division of Endocrinology/Metabolic Bone Disease Service, Hospital for Special Surgery, New York, NY.
Opportunistic screening is essential to improve the identification of individuals with osteoporosis. Our group has utilized image texture features to assess bone quality using clinical MRIs. We have previously demonstrated that greater heterogeneity of MRI texture related to history of fragility fractures, lower bone density, and worse microarchitecture.
View Article and Find Full Text PDFNeuro Oncol
December 2024
Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
Background: Selinexor is a selective inhibitor of exportin-1 (XPO1), a key mediator of the nucleocytoplasmic transport for molecules critical to tumor cell survival. Selinexor's lethality is generally associated with the induction of apoptosis, and in some cases, with autophagy-induced apoptosis. We performed this study to determine Selinexor's action in glioblastoma (GBM) cells, which are notoriously resistant to apoptosis.
View Article and Find Full Text PDFSci Rep
December 2024
School of Human Sciences, University of Western Australia, Crawley, WA, 6009, Australia.
Hearing loss (HL) in mid-life has been suggested as a risk factor for cognitive decline. It is unclear whether this relationship is due to deprivation of auditory input alone, degenerative processes, or a combination. Animal models are useful to investigate underlying neural mechanisms as human studies can be confounded by various factors.
View Article and Find Full Text PDFSci Rep
December 2024
Henan University of Engineering, Zhengzhou, 451191, China.
Social media generates vast amounts of spatio-temporal sequential data. However, current methods often ignore the complex spatio-temporal correlations within these data. This oversight makes it difficult to fully capture the dynamic features of the data.
View Article and Find Full Text PDFEnviron Res
December 2024
International Institute for Applied Systems Analysis (IIASA), Wittgenstein Centre for Demography and Global Human Capital (IIASA, OeAW, University of Vienna), Schloßplatz 1, 2361 Laxenburg, Austria. Electronic address:
The present study investigates how ecosystem resilience affects children's health and acts as a protective shield against high temperature exposure. Ecosystem resilience is the ability of an ecosystem to absorb anthropogenic or climatic shocks and recover from those shocks. The study used various data sources to estimate the impact of temperature extremes on child mortality in India.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!