Graphene, hexagonal boron nitride (h-BN), and their heterostructures are promising thermal interface materials due to the outstanding thermal properties of graphene and h-BN. For the heterostructures, extensive work has mainly focused on the thermal transport of two-dimensional (2D) graphene/h-BN (GBN) in-plane heterostructures in which graphene and h-BN are bonded at the interface. In this study, we investigate the thermal conductivity of three-dimensional (3D) GBN van der Waals (vdW) heterostructures by means of nonequilibrium molecular dynamics (NEMD) simulations. Unlike the 2D GBN in-plane heterostructure, the 3D GBN vdW heterostructure consists of three layers where graphene is sandwiched by two h-BN sheets via vdW forces. Various techniques, including hydrogen-functionalization, vacancy defects, tensile strain, interlayer coupling strength, layer numbers of h-BN, size effect, and temperature, are extensively explored to find an effective route for the modulation of the thermal conductivity. It is found that the thermal conductivity of the triple-layer GBN vdW heterostructure is very sensitive to these extrinsic factors. Of these, hydrogen-functionalization is the most effective method. A low hydrogen coverage of 1% in the sandwiched graphene can lead to 55% reduction in the thermal conductivity of the vdW heterostructure. Vacancy defects on graphene exert a more significant effect on the thermal conductivity reduction for the vdW heterostructure than B or N vacancies in the outer h-BN layers. This work reveals the physical mechanism for manipulating the thermal transport along the GBN vdW heterostructures via structural modification and provides a useful guideline for designing novel thermal management devices based on the GBN vdW heterostructures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c14871DOI Listing

Publication Analysis

Top Keywords

thermal conductivity
24
gbn vdw
16
vdw heterostructure
16
vdw heterostructures
12
thermal
11
molecular dynamics
8
boron nitride
8
van der
8
der waals
8
heterostructures graphene
8

Similar Publications

Direct Assembly of Grooved Micro/Nanofibrous Aerogel for High-Performance Thermal Insulation via Electrospinning.

ACS Appl Mater Interfaces

January 2025

CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.

Maintaining human body temperature in both high and low-temperature environments is fundamental to human survival, necessitating high-performance thermal insulation materials to prevent heat exchange with the external environment. Currently, most fibrous thermal insulation materials are characterized by large weight, suboptimal thermal insulation, and inferior mechanical and waterproof performance, thereby limiting their effectiveness in providing thermal protection for the human body. In this study, lightweight, waterproof, mechanically robust, and thermal insulating polyamide-imide (PAI) grooved micro/nanofibrous aerogels were efficiently and directly assembled by electrospinning.

View Article and Find Full Text PDF

The bismuth monolayer has recently been experimentally identified as a novel platform for the investigation of two-dimensional single-element ferroelectric system. Here, we model the potential energy surface of a bismuth monolayer by employing a message-passing neural network and achieve an error smaller than 1.2 meV per atom.

View Article and Find Full Text PDF

Carbon-carbon (C/C) composites are attractive materials for high-speed flights and terrestrial atmospheric reentry applications due to their insulating thermal properties, thermal resistance, and high strength-to-weight ratio. It is important to understand the evolving structure-property correlations in these materials during pyrolysis, but the extreme laboratory conditions required to produce C/C composites make it difficult to quantify the properties . This work presents an atomistic modeling methodology to pyrolyze a crosslinked phenolic resin network and track the evolving thermomechanical properties of the skeletal matrix during simulated pyrolysis.

View Article and Find Full Text PDF

Establishing and regulating the ferroelectric polarization in ferroelectric nano-scale catalysts has been recognized as an emerging strategy to advance water splitting reactions, with the merits of improved surface charge density, high charge transfer rate, increased electronic conductivity, the creation of real active sites, and optimizing the chemisorption energy. As a result, engineering and tailoring the ferroelectric polarization induced internal electric field provides significant opportunities to improve the surface and electronic characteristics of catalysts, thereby enhancing the water splitting reaction kinetics. In this review, an interdisciplinary and comprehensive summary of recent advancements in the construction, characterization, engineering and regulation of the polarization in ferroelectric-based catalysts for water splitting is provided, by exploiting a variety of external stimuli.

View Article and Find Full Text PDF

To reduce greenhouse emissions and producing electricity with the smallest environmental impact, developing solar power technology is one of the most important milestones to achieve. Thus, to improve the efficiency of the concentrated solar power (CSP) plants, with lower environmental impact, is of great interest. This work reports the development of nanofluids, a colloidal suspension of nanomaterials in a fluid, based on an environment-friendly base fluid for improving the performance of the heat transfer process in CSP plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!