A novel interpretable machine learning algorithm to identify optimal parameter space for cancer growth.

Front Big Data

Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom.

Published: September 2022

Recent years have seen an increase in the application of machine learning to the analysis of physical and biological systems, including cancer progression. A fundamental downside to these tools is that their complexity and nonlinearity makes it almost impossible to establish a deterministic, relationship between their input and output, and thus their predictions are not wholly accountable. We begin with a series of proofs establishing that this holds even for the simplest possible model of a neural network; the effects of specific loss functions are explored more fully in Appendices. We return to first principles and consider how to construct a physics-inspired model of tumor growth without resorting to stochastic gradient descent or artificial nonlinearities. We derive an algorithm which explores the space of possible parameters in a model of tumor growth and identifies candidate equations much faster than a simulated annealing approach. We test this algorithm on synthetic tumor-growth trajectories and show that it can efficiently and reliably narrow down the area of parameter space where the correct values are located. This approach has the potential to greatly improve the speed and reliability with which patient-specific models of cancer growth can be identified in a clinical setting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9510846PMC
http://dx.doi.org/10.3389/fdata.2022.941451DOI Listing

Publication Analysis

Top Keywords

machine learning
8
parameter space
8
cancer growth
8
model tumor
8
tumor growth
8
novel interpretable
4
interpretable machine
4
learning algorithm
4
algorithm identify
4
identify optimal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!