A Revision of the Traditional Analysis Method of Allometry to Allow Extension of the Normality-Borne Complexity of Error Structure: Examining the Adequacy of a Normal-Mixture Distribution-Driven Error Term.

Biomed Res Int

Centro de Investigación Científica y de Estudios Superiores de Ensenada, Carretera Ensenada-Tijuana No. 3918, Zona Playitas, 22860, 360 Ensenada, B.C., Mexico.

Published: September 2022

Huxley's model of simple allometry provides a parsimonious scheme for examining scaling relationships in scientific research, resource management, and species conservation endeavors. Factors including biological error, analysis method, sample size, and overall data quality can undermine the reliability of a fit of Huxley's model. Customary amendments enhance the complexity of the power function-conveyed systematic term while keeping the usual normality-borne error structure. The resulting protocols bear multiple-parameter complex allometry forms that could pose interpretative shortcomings and parameter estimation difficulties, and even being empirically pertinent, they could potentially bear overfitting. A subsequent heavy-tailed Q-Q normal spread often remains undetected since the adequacy of a normally distributed error term remains unexplored. Previously, we promoted the advantages of keeping Huxley's model-driven systematic part while switching to a logistically distributed error term to improve fit quality. Here, we analyzed eelgrass leaf biomass and area data exhibiting a marked size-related heterogeneity, perhaps explaining a lack of systematization at data gathering. Overdispersion precluded adequacy of the logistically adapted protocol, thereby suggesting processing data through a median absolute deviation scheme aimed to remove unduly replicates. Nevertheless, achieving regularity to Huxley's power function-like trend required the removal of many replicates, thereby questioning the integrity of a data cleaning approach. But, we managed to adapt the complexity of the error term to reliably identify Huxley's model-like systematic part masked by variability in data. Achieving this relied on an error term conforming to a normal mixture distribution which successfully managed overdispersion in data. Compared to normal-complex allometry and data cleaning composites present arrangement delivered a coherent Q-Q normal mixture spread and a remarkable reproducibility strength of derived proxies. By keeping the analysis within Huxley's original theory, the present approach enables substantiating nondestructive allometric proxies aimed at eelgrass conservation. The viewpoint endorsed here could also make data cleaning unnecessary.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9512611PMC
http://dx.doi.org/10.1155/2022/8310213DOI Listing

Publication Analysis

Top Keywords

error term
20
data cleaning
12
data
9
analysis method
8
error
8
complexity error
8
error structure
8
huxley's model
8
q-q normal
8
distributed error
8

Similar Publications

Background: Forecasting future public pharmaceutical expenditure is a challenge for healthcare payers, particularly owing to the unpredictability of new market introductions and their economic impact. No best-practice forecasting methods have been established so far. The literature distinguishes between the top-down approach, based on historical trends, and the bottom-up approach, using a combination of historical and horizon scanning data.

View Article and Find Full Text PDF

: Significant intraoperative and postoperative blood loss are rare but possibly life-threatening complications after lung resection surgery either during open or minimally invasive procedures. Microporous Polysaccharide Haemospheres (ARISTA™AH) have demonstrated time-efficient haemostasis, lower postoperative blood volumes and a lower blood transfusion requirement, without any identified adverse events across other specialities. The primary aim of our study was to evaluate the impact of ARISTA™AH on short-term postoperative outcomes in thoracic surgery.

View Article and Find Full Text PDF

Analyzing performance in rowing, e.g., analyzing force and power output profiles produced either on ergometer or on boat, is a priority for trainers and athletes.

View Article and Find Full Text PDF

Lens-Free On-Chip Quantitative Phase Microscopy for Large Phase Objects Based on a Biplane Phase Retrieval Method.

Sensors (Basel)

December 2024

Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

Lens-free on-chip microscopy (LFOCM) is a powerful computational imaging technology that combines high-throughput capabilities with cost efficiency. However, in LFOCM, the phase recovered by iterative phase retrieval techniques is generally wrapped into the range of -π to π, necessitating phase unwrapping to recover absolute phase distributions. Moreover, this unwrapping process is prone to errors, particularly in areas with large phase gradients or low spatial sampling, due to the absence of reliable initial guesses.

View Article and Find Full Text PDF

Dynamic Prediction of Physical Exertion: Leveraging AI Models and Wearable Sensor Data During Cycling Exercise.

Diagnostics (Basel)

December 2024

Department of Biomedical Informatics, University of Utah, Salt Lake City, UT 84108, USA.

: This study aimed to explore machine learning approaches for predicting physical exertion using physiological signals collected from wearable devices. : Both traditional machine learning and deep learning methods for classification and regression were assessed. The research involved 27 healthy participants engaged in controlled cycling exercises.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!