AI Article Synopsis

  • - The study aimed to analyze how maintenance energy needs in limit-fed Angus cows relate to energy used for building maternal tissue and milk production, and how this retained energy impacts forage intake during the dry period.
  • - Twenty-four Angus cows were monitored over a 79-day late lactation phase, with precise adjustments made to their daily feed intake based on changes in body weight, and milk production and composition were measured periodically.
  • - Findings indicated that maintenance energy for lactation was lower than expected, suggesting that as cows retain more energy (gain less weight and produce more milk), their energy requirements for maintenance decrease, differing from earlier beliefs about the relationship between milk yield and maintenance needs.

Article Abstract

The objectives of these experiments were to determine the relationship between maintenance requirements and energy partitioned to maternal tissue or milk production in limit-fed Angus cows and to determine the relationship between retained energy during the lactation period to dry-period voluntary forage intake (VDMI). Twenty-four mature fall-calving Angus cows were used in a 79-d study during late lactation to establish daily metabolizable energy required for maintenance (ME). Cows were individually fed daily a mixed diet (2.62 Mcal MEl/kg, 18.2% crude protein) to meet energy and protein requirements of 505 kg beef cows producing 8.2 kg milk daily. If cow BW changed by ±9 kg from initial BW, daily feed intake was adjusted to slow BW loss or reduce BW gain. Milk yield and composition were determined on 3 occasions throughout the study. Maintenance was computed as metabolizable energy intake minus retained energy assigned to average daily maternal tissue energy change, average daily milk energy yield, and average daily energy required for pregnancy. After calves were weaned, cows were fed a low-quality grass hay diet (8.2% crude protein, 65% NDF) and VDMI was measured for 21 days. Lactation maintenance energy was 83% the default value recommended by NASEM (2016. Nutrient Requirements of Beef Cattle: Eighth Revised Edition.) for lactating Angus cows. Increasing lactation-period retained energy (decreasing BW loss and increasing milk energy yield) was associated with lower maintenance energy requirements ( < 0.01; = 0.92). Increased residual daily gain during lactation was associated with lower lactation maintenance energy requirements ( = 0.05; = 0.17). Post-weaning VDMI was not related to late-lactation milk energy production, although sensitive to lactation period BCS and BW loss. These results contradict previous reports, suggesting that maintenance requirements increase with increasing milk yield.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9512099PMC
http://dx.doi.org/10.1093/tas/txac120DOI Listing

Publication Analysis

Top Keywords

retained energy
16
energy
16
maintenance energy
16
angus cows
12
average daily
12
milk energy
12
beef cows
8
maintenance
8
feed intake
8
determine relationship
8

Similar Publications

Functional flexible adsorbents and their potential utility.

Chem Commun (Camb)

January 2025

Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94T9PX, Republic of Ireland.

Physisorbents are poised to address global challenges such as CO capture, mitigation of water scarcity and energy-efficient commodity gas storage and separation. Rigid physisorbents, those adsorbents that retain their structures upon gas or vapour exposure, are well studied in this context. Conversely, cooperatively flexible physisorbents undergo long-range structural transformations stimulated by guest exposure.

View Article and Find Full Text PDF

Injectable biomaterials, such as thermosensitive chitosan (CH)-based hydrogels, present a highly translational potential in dentistry due to their minimally invasive application, adaptability to irregular defects/shapes, and ability to carry therapeutic drugs. This work explores the incorporation of azithromycin (AZI) into thermosensitive CH hydrogels for use as an intracanal medication in regenerative endodontic procedures (REPs). The morphological and chemical characteristics of the hydrogel were assessed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR).

View Article and Find Full Text PDF

Fully biobased and robust antibacterial cellulose aerogel for uranium extraction.

Int J Biol Macromol

January 2025

Qingdao New Energy Shandong Laboratory, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.

Developing efficient adsorbent is imperative for the utilization of uranium resources in seawater. Marine microorganisms and bacteria play an important role in the process of adsorption of uranium. In this work, a completely bio-based antimicrobial aerogel (quaternary cellulose/chitosan aerogel-QCNF/CS) was prepared by cross-linking quaternary cellulose nanofibers (QCNF) and chitosan (CS) via citric acid (CA).

View Article and Find Full Text PDF

Highly stable lithium metal anodes enabled by bimetallic metal-organic frameworks derivatives-modified carbon cloth.

J Colloid Interface Sci

January 2025

College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006 China. Electronic address:

Lithium (Li) metal anodes hold great promise for next-generation secondary batteries with high energy density. Unfortunately, several problems such as Li dendrite growth, low Coulombic efficiency and poor cycle life hinder the commercialization of Li metal anodes. Herein, we design a highly lithiophilic carbon cloth host modified with Sn-doped zinc oxide (ZnO) (ZnSn-CC) directly derived from a bimetallic ZnSn metal-organic framework (ZnSn-MOF), which boosts uniform Li plating/stripping during charge-discharge and effectively protects the Li metal anode.

View Article and Find Full Text PDF

Emerging wearable devices would benefit from integrating ductile photovoltaic light-harvesting power sources. In this work, we report a small-molecule acceptor (SMA), also known as a non-fullerene acceptor (NFA), designed for stretchable organic solar cell (-OSC) blends with large mechanical compliance and performance. Blends of the organosilane-functionalized SMA BTP-Si4 with the polymer donor PNTB6-Cl achieved a power conversion efficiency (PCE) of >16% and ultimate strain (ε) of >95%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!