Background: Traumas to the head and neck are common in sports and often affects otherwise healthy young individuals. Sports-related concussions (SRC), defined as a mild traumatic brain injury (mTBI), may inflict persistent neck and shoulder pain, and headache, but also more complex symptoms, such as imbalance, dizziness, and visual disturbances. These more complex symptoms are difficult to identify with standard health care diagnostic procedures.
Objective: To investigate postural control in a group of former elite athletes with persistent post-concussive symptoms (PPCS) at least 6 months after the incident.
Method: Postural control was examined using posturography during quiet stance and randomized balance perturbations with eyes open and eyes closed. Randomized balance perturbations were used to examine motor learning through sensorimotor adaptation. Force platform recordings were converted to reflect the energy used to maintain balance and spectrally categorized into total energy used, energy used for smooth corrective changes of posture (i.e., <0.1 Hz), and energy used for fast corrective movements to maintain balance (i.e., >0.1 Hz).
Results: The mTBI group included 20 (13 males, mean age 26.6 years) elite athletes with PPCS and the control group included 12 athletes (9 males, mean age 26.4 years) with no history of SRC. The mTBI group used significantly more energy during balance perturbations than controls: +143% total energy, = 0.004; +122% low frequency energy, = 0.007; and +162% high frequency energy, = 0.004. The mTBI subjects also adapted less to the balance perturbations than controls in total (18% mTBI vs. 37% controls, = 0.042), low frequency (24% mTBI vs. 42% controls, = 0.046), and high frequency (6% mTBI vs. 28% controls, = 0.040). The mTBI subjects used significantly more energy during quiet stance than controls: +128% total energy, = 0.034; +136% low-frequency energy, = 0.048; and +109% high-frequency energy, = 0.015.
Conclusion: Athletes with previous mTBI and PPCS used more energy to stand compared to controls during balance perturbations and quiet stance and had diminished sensorimotor adaptation. Sports-related concussions are able to affect postural control and motor learning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9511028 | PMC |
http://dx.doi.org/10.3389/fneur.2022.906594 | DOI Listing |
Appl Biochem Biotechnol
January 2025
Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Cyanobacteria are advantageous hosts for industrial applications toward achieving sustainable society due to their unique and superior properties such as atmospheric CO fixation via photosynthesis. However, cyanobacterial productivities tend to be weak compared to heterotrophic microbes. To enhance them, it is necessary to understand the fundamental metabolic mechanisms unique to cyanobacteria.
View Article and Find Full Text PDFTrends Cogn Sci
January 2025
School of Psychological Sciences, College of Engineering, Science, and the Environment, University of Newcastle, Newcastle, New South Wales, Australia; School of Public Health and Medicine, College of Medicine, Health and Wellbeing, University of Newcastle, Newcastle, New South Wales, Australia.
Cognition and behavior are emergent properties of brain systems that seek to maximize complex and adaptive behaviors while minimizing energy utilization. Different species reconcile this trade-off in different ways, but in humans the outcome is biased towards complex behaviors and hence relatively high energy use. However, even in energy-intensive brains, numerous parsimonious processes operate to optimize energy use.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada.
Excitation-inhibition (E/I) imbalance is theorized as a key mechanism in the pathophysiology of epilepsy, with ample research focusing on elucidating its cellular manifestations. However, few studies investigate E/I imbalance at the macroscale, whole-brain level, and its microcircuit-level mechanisms and clinical significance remain incompletely understood. Here, the Hurst exponent, an index of the E/I ratio, is computed from resting-state fMRI time series, and microcircuit parameters are simulated using biophysical models.
View Article and Find Full Text PDFReprod Sci
January 2025
Department of Zoology, Faculty of Science, University of Allahabad, Prayagraj, 211002, UP, India.
As global change threatens avian biodiversity, understanding species responses to environmental perturbations due to radiation emitted by enormous increase in the application of wireless communication is very urgent. The study investigates the effect of MW radiation on redox balance, stress level, male fertility and the efficacy of Withania somnifera (WS) root extract (100 mg/kg body weight) orally administered in 8 weeks old mature male Japanese quail exposed to 2.4 GHz MW radiation for 2 h/day for 30 days with power density = 0.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel. Electronic address:
During development, amniote vertebrate embryos transform from a flat sheet into a three-dimensional cylindrical form through ventral folding of the lateral sides of the sheet (the lateral plate [LP]) and their fusion in the ventral midline. Using a chick embryo slice system, we find that the flat stage is actually a poised balance of opposing dorsal and ventral elastic bending tensions. An intact extracellular matrix (ECM) is required for generating tension, as localized digestion of ECM dissipates tension, while removal of endoderm or ectoderm layers has no significant effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!