Dual drug delivery platforms for bone tissue engineering.

Front Bioeng Biotechnol

Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, India.

Published: September 2022

The dual delivery platforms used in bone tissue engineering provide supplementary bioactive compounds that include distinct medicines and growth factors thereby aiding enhanced bone regeneration. The delivery of these compounds can be adjusted for a short or prolonged time based on the requirement by altering various parameters of the carrier platform. The platforms thus used are fabricated to mimic the niche of the bone microenvironment, either in the form of porous 3D structures, microspheres, or films. Thus, this review article focuses on the concept of dual drug delivery platform and its importance, classification of various platforms for dual drug delivery specific to bone tissue engineering, and finally highlights the foresight into the future direction of these techniques for better clinical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9511792PMC
http://dx.doi.org/10.3389/fbioe.2022.969843DOI Listing

Publication Analysis

Top Keywords

dual drug
12
drug delivery
12
bone tissue
12
tissue engineering
12
delivery platforms
8
platforms bone
8
delivery
5
bone
5
dual
4
platforms
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China.

Background: Glucagon-like peptide 1 (GLP-1) is a peptide hormone that plays several physiological roles in treating diabetes and in protecting the brain. Recent clinical trials testing 4 different GLP-1 class drugs in phase 2 trials showed a clear correlation between neuroprotection and the ability to cross the BBB. Exenatide and Lixisenatide both showed excellent protective effects in patients Parkinson's disease (PD) and both drugs can readily cross the BBB.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

AC Immune SA, Lausanne, Switzerland.

Background: The key advantage of active immunization is the induction of sustained, polyclonal antibody responses that are readily boosted by occasional immunizations. Recent clinical trial outcomes for monoclonal antibodies lecanemab and donanemab, establish the relevance of targeting pathological Abeta for clearing amyloid plaques in Alzheimer's disease. ACI-24.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Loma Linda University Health, Loma Linda, CA, USA.

Background: Only about 50% of the variance in cognitive decline occurring during Alzheimer's pathogenesis is attributable to standard AD biomarkers (cerebrocortical Aβ, pathological tau, and atrophy) (Tosun et al., Alzheimer's Dement. 18: 1370, 2022).

View Article and Find Full Text PDF

Background: Alzheimer's Disease (AD) is the leading form of senile dementia, affecting ∼6 million Americans and having a national economic impact of $321 billion, numbers expected to double by 2050. The major pathological hallmarks of AD include Amyloid Beta (Aβ) plaques and Tau neurofibrillary tangles (NFT). The first goal of this research was to develop novel forms of carbon dots (CD) using various precursors.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a neurodegenerative disorder without a cure. Targeting this multifactorial disease by repurposing FDA approved drugs serves as a faster mode of treatment due to its pre-established human safety. We tested terazosin (TZ), an a-1 adrenergic receptor (AR) antagonist and phosphoglycerate kinase-1 (PGK1) activator as having potential to treat AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!