Glyphosate-based herbicides (GBHs) are massively used in agriculture. However, few studies have investigated the effects of glyphosate-based herbicides on avian species although they are largely exposed via their food. Here, we investigated the potential reversibility of the effects of chronic dietary exposure to glyphosate-based herbicides in broiler hens. For 42 days, we exposed 32-week-old hens to glyphosate-based herbicides via their food (47 mg/kg/day glyphosate equivalent, glyphosate-based herbicides, n = 75) corresponding to half glyphosate's no-observed-adverse-effect-level in birds. We compared their performance to that of 75 control animals (CT). Both groups (glyphosate-based herbicides and control animals) were then fed for 28 additional days without glyphosate-based herbicides exposure (Ex-glyphosate-based herbicides and Ex-control animals). Glyphosate-based herbicides temporarily increased the plasma glyphosate and AMPA (aminomethylphosphonic acid) concentrations. Glyphosate and aminomethylphosphonic acid mostly accumulated in the liver and to a lesser extent in the leg muscle and abdominal adipose tissue. Glyphosate-based herbicides also temporarily increased the gizzard weight and plasma oxidative stress monitored by TBARS (thiobarbituric acid reactive substances). Glyphosate-based herbicides temporarily decreased the cecal concentrations of propionate, isobutyrate and propionate but acetate and valerate were durably reduced. The cecal microbiome was also durably affected since glyphosate-based herbicides inhibited and favored . Body weight, fattening, food intake and feeding behavior as well as plasma lipid and uric acid were unaffected by glyphosate-based herbicides. Taken together, our results show possible disturbances of the cecal microbiota associated with plasma oxidative stress and accumulation of glyphosate in metabolic tissues in response to dietary glyphosate-based herbicides exposure in broiler hens. Luckily, glyphosate-based herbicides at this concentration does not hamper growth and most of the effects on the phenotypes are reversible.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9511142 | PMC |
http://dx.doi.org/10.3389/fphys.2022.974688 | DOI Listing |
ADMET DMPK
December 2024
Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
Background And Purpose: Glyphosate-based herbicides, extensively utilized worldwide, raise concerns regarding potential human risks due to the detection of glyphosate (GLY) in human body fluids. This study aims to address critical knowledge gaps regarding whether GLY undergoes metabolism in humans, particularly considering the limited information available on human metabolism.
Experimental Approach: The study investigated GLY and its metabolites in eight amenity horticultural workers using proton nuclear magnetic resonance (H-NMR) data analysis.
Environ Sci Pollut Res Int
December 2024
Laboratório de Ecologia e Conservação, Universidade Federal da Fronteira Sul, Campus Erechim, RS 135 - km 72, nº 200, Erechim, RS, Brazil.
Atrazine and glyphosate are considered some of the main pollutants for aquatic ecosystems, directly and indirectly affecting non-target organisms, such as amphibians. This study aimed to evaluate the sublethal effects of different concentrations of atrazine-based herbicide (ABH) and glyphosate-based herbicide (GBH) commercial formulations, both individually and in a mixture, through toxicity tests on the larval stage of Boana faber. Tadpoles were exposed to concentrations of ABH (2, 9.
View Article and Find Full Text PDFChemosphere
December 2024
Universidade Federal de Minas Gerais, Instituto de Ciências Exatas, Departamento de Química. Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, Brazil. Electronic address:
Metabolomics is a valuable tool to assess glyphosate exposure and its potential impact on human health. However, few studies have used metabolomics to evaluate human exposure to glyphosate or glyphosate-based herbicides (GBHs). In this study, an untargeted and targeted metabolomics approach was applied to human skin fibroblasts exposed to the GBH Roundup (GLYP-R).
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
School of Health Sciences, Purdue University, West Lafayette, IN, USA. Electronic address:
Glyphosate is an acidic herbicide reported to contaminate water sources around the globe. Glyphosate alters the pH of a solution depending upon the concentration and buffering capacity of the solution in which it is present. Hence, toxicity observed in laboratory-based studies could be caused by the chemical or acidic pH if the solution is not adjusted to neutral conditions, confounding toxicity assessments.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
December 2024
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Laboratório de Toxicologia Aquática, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil. Electronic address:
Glyphosate, a pesticide commonly found in aquatic ecosystems, affects this habitat and nontarget organisms such as fish. The increase in water temperature, linked to factors such as climate change, poses a considerable threat. Despite extensive ecotoxicological research, we still do not know the real individual and specific consequences of continued exposure to glyphosate and high temperatures, simulating a scenario where the aquatic environment remains contaminated and temperatures continue to rise.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!