The development of a method for genome editing based on CRISPR-Cas9 technology was awarded The Nobel Prize in Chemistry in 2020, less than a decade after the discovery of all principal molecular components of the system. For the first time in history a Nobel prize was awarded to two women, Emmanuelle Charpentier and Jennifer Doudna, who made key discoveries in the field of DNA manipulation with the CRISPR-Cas9 system, so-called "genetic scissors". It is difficult to overestimate the importance of the technique as it enables one not only to manipulate genomes of model organisms in scientific experiments, and modify characteristics of important crops and animals, but also has the potential of introducing revolutionary changes in medicine, especially in treatment of genetic diseases. The original biological function of CRISPR-Cas9 system is the protection of prokaryotes from mobile genetic elements, in particular viruses. Currently, CRISPR-Cas9 and related technologies have been successfully used to cure life-threatening diseases, make coronavirus detection tests, and even to modify human embryo cells with the consequent birth of babies carrying the introduced modifications. This intervention with human germplasm cells resulted in wide disapproval in the scientific community due to ethical concerns, and calls for a moratorium on inheritable genomic manipulations. This review focuses on the history of the discovery of the CRISPR-Cas9 system with some aspects of its current applications, including ethical concerns about its use in humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9377665 | PMC |
http://dx.doi.org/10.1134/S0006297922080090 | DOI Listing |
Front Immunol
January 2025
Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States.
Chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of hematologic malignancies, achieving remarkable clinical success with FDA-approved therapies targeting CD19 and BCMA. However, the extension of these successes to solid tumors remains limited due to several intrinsic challenges, including antigen heterogeneity and immunosuppressive tumor microenvironments. In this review, we provide a comprehensive overview of recent advances in CAR T cell therapy aimed at overcoming these obstacles.
View Article and Find Full Text PDFCancer Control
January 2025
Department of Haide College, Ocean University of China, Qingdao, China.
CRISPR/Cas9 technology has rapidly advanced as a pivotal tool in cancer research, particularly in the precision targeting required for both detecting and treating malignancies. Its high specificity and low off-target effects make it exceptionally effective in applications involving Human Papillomavirus (HPV) related diseases, most notably cervical cancer. This approach offers a refined methodology for the rapid detection of viral infections and provides a robust platform for the safe and effective treatment of diseases associated with viral infections through gene therapy.
View Article and Find Full Text PDFMol Biol Evol
January 2025
Ecology, Evolution, and Behavior, 140 Gortner Lab, 1479 Gortner Ave, University of Minnesota, Saint Paul, MN 55108, USA.
Loss-of-function alleles are a pertinent source of genetic variation with the potential to contribute to adaptation. Cave-adapted organisms exhibit striking loss of ancestral traits such as eyes and pigment, suggesting that loss-of-function alleles may play an outsized role in these systems. Here, we leverage 141 whole genome sequences to evaluate the evolutionary history and adaptive potential of single nucleotide premature termination codons (PTCs) in Mexican tetra.
View Article and Find Full Text PDFAnal Bioanal Chem
January 2025
Biospring Gesellschaft für Biotechnologie, Alt-Fechenheim 34, Frankfurt am Main, 60386, Germany.
The use of single-guide RNA (sgRNA) for gene editing using the CRISPR Cas9 system has become a powerful technique in various fields, especially with the growing interest in such molecules as therapeutic options in the last years. An important parameter for the use of these molecules is the verification of the correct sgRNA oligonucleotide sequence. Apart from next-generation sequencing protocols, mass spectrometry (MS) has been proven as a powerful technique for this purpose.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Livestock, Key Laboratory of Animal Biotechnology of Xinjiang, Ministry of Agriculture(MOA), Urumqi, 830026, Xinjiang, China.
CRISPR/Cas9 technology has been widely utilized to enhance productive performance, increase disease resistance and generate medical models in livestock. The FecB allele in sheep is a mutation in the BMPRIB gene, recognized as the first major gene responsible for the high fecundity trait in sheep, leading to an increased ovulation rate in ewe. In this study, we employed CRISPR/Cas9-mediated homologous-directed repair (HDR) to introduce a defined point mutation (c.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!