Cytochrome bd-II is one of the three terminal quinol oxidases of the aerobic respiratory chain of Escherichia coli. Preparations of the detergent-solubilized untagged bd-II oxidase isolated from the bacterium were shown to scavenge hydrogen peroxide (H2O2) with high rate producing molecular oxygen (O). Addition of H2O2 to the same buffer that does not contain enzyme or contains thermally denatured cytochrome bd-II does not lead to any O2 production. The latter observation rules out involvement of adventitious transition metals bound to the protein. The H2O2-induced O2 production is not susceptible to inhibition by N-ethylmaleimide (the sulfhydryl binding compound), antimycin A (the compound that binds specifically to a quinol binding site), and CO (diatomic gas that binds specifically to the reduced heme d). However, O2 formation is inhibited by cyanide (IC = 4.5 ± 0.5 µM) and azide. Addition of H2O2 in the presence of dithiothreitol and ubiquinone-1 does not inactivate cytochrome bd-II and apparently does not affect the O2 reductase activity of the enzyme. The ability of cytochrome bd-II to detoxify H2O2 could play a role in bacterial physiology by conferring resistance to the peroxide-mediated stress.

Download full-text PDF

Source
http://dx.doi.org/10.1134/S0006297922080041DOI Listing

Publication Analysis

Top Keywords

cytochrome bd-ii
20
escherichia coli
8
hydrogen peroxide
8
addition h2o2
8
bd-ii
6
cytochrome
5
preparations terminal
4
terminal oxidase
4
oxidase cytochrome
4
bd-ii isolated
4

Similar Publications

The terminal oxidases of bacterial aerobic respiratory chains are redox-active electrogenic enzymes that catalyze the four-electron reduction of O to 2HO taking out electrons from quinol or cytochrome . Living bacteria often deal with carbon monoxide (CO) which can act as both a signaling molecule and a poison. Bacterial terminal oxidases contain hemes; therefore, they are potential targets for CO.

View Article and Find Full Text PDF

[Cytochrome bd as Antioxidant Redox Enzyme].

Mol Biol (Mosk)

December 2023

Department of Biochemical Sciences, Sapienza University of Rome, Rome, I-00185 Italy.

One of the main functions of enzyme complexes that constitute electron transport (respiratory) chains of organisms is to maintain cellular redox homeostasis by oxidizing reducing equivalents, NADH and quinol. Cytochrome bd is a unique terminal oxidase of the chains of many bacteria including pathogenic species. This redox enzyme couples the oxidation of ubiquinol or menaquinol by molecular oxygen to the generation of proton motive force, a universal energy currency.

View Article and Find Full Text PDF

Carbon monoxide (CO) plays a multifaceted role in the physiology of organisms, from poison to signaling molecule. Heme proteins, including terminal oxidases, are plausible CO targets. Three quinol oxidases terminate the branched aerobic respiratory chain of Escherichia coli.

View Article and Find Full Text PDF

Bacterial energy metabolism has become a promising target for next-generation tuberculosis chemotherapy. One strategy to hamper ATP production is to inhibit the respiratory oxidases. The respiratory chain of Mycobacterium tuberculosis comprises a cytochrome bcc:aa and a cytochrome bd ubiquinol oxidase that require a combined approach to block their activity.

View Article and Find Full Text PDF

pH-dependent kinetics of NO release from E. coli bd-I and bd-II oxidase reveals involvement of Asp/Glu58.

Biochim Biophys Acta Bioenerg

April 2023

Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS, 67000 Strasbourg, France. Electronic address:

Escherichia coli contains two cytochrome bd oxidases, bd-I and bd-II. The structure of both enzymes is highly similar, but they exhibit subtle differences such as the accessibility of the active site through a putative proton channel. Here, we demonstrate that the duroquinol:dioxygen oxidoreductase activity of bd-I increased with alkaline pH, whereas bd-II showed a broad activity maximum around pH 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!