Ultrasound imaging provides the means for non-invasive real-time diagnostics of the internal structure of soft tissue in living organisms. However, the majority of commercially available ultrasonic transducers have rigid interfaces which cannot conform to highly-curved surfaces. These geometric limitations can introduce a signal-quenching air gap for certain topographies, rendering accurate imaging difficult or impractical. Here, we demonstrate a 256-element flexible two-dimensional (2D) ultrasound piezoelectric transducer array with geometric phase correction. We show surface-conformable real-time B-mode imaging, down to an extreme radius of curvature of 1.5 cm, while maintaining desirable performance metrics such as high signal-to-noise ratio (SNR) and minimal elemental cross-talk at all stages of bending. We benchmark the array capabilities by resolving reflectors buried at known locations in a medical-grade tissue phantom, and demonstrate how phase correction can improve image reconstruction on curved surfaces. With the current array design, we achieve an axial resolution of ≈ 2 mm at clinically-relevant depths in tissue, while operating the array at 1.4 MHz with a bandwidth of ≈ 41%. We use our prototype to image the surface of the human humerus at different positions along the arm, demonstrating proof-of-concept applicability for real-time diagnostics using phase-corrected flexible ultrasound probes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519534PMC
http://dx.doi.org/10.1038/s41598-022-20721-7DOI Listing

Publication Analysis

Top Keywords

phase correction
12
flexible ultrasound
8
geometric phase
8
real-time diagnostics
8
array
5
ultrasound transceiver
4
transceiver array
4
array non-invasive
4
non-invasive surface-conformable
4
imaging
4

Similar Publications

Introduction: Stroke-associated pneumonia (SAP) is a major cause of mortality during the acute phase of stroke. The ADS score is widely used to predict SAP risk but does not include 24-h non-contrast computed tomography-Alberta Stroke Program Early CT Score (NCCT-ASPECTS) or red cell distribution width (RDW). We aim to evaluate the added prognostic value of incorporating 24-h NCCT-ASPECTS and RDW into the ADS score and to develop a novel prediction model for SAP following thrombolysis.

View Article and Find Full Text PDF

Mitigating matrix effects in oil and gas wastewater analysis: LC-MS/MS method for ethanolamines.

Environ Sci Process Impacts

January 2025

Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, USA.

The high salinity and organic content in oil and gas wastewaters can cause ion suppression during liquid chromatography mass spectrometry (LC/MS) analysis, diminishing the sensitivity and accuracy of measurements in available methods. This suppression is severe for low molecular weight organic compounds such as ethanolamines (, monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), -methyldiethanolamine (MDEA), and ,-ethyldiethanolamine (EDEA)). Here, we deployed solid phase extraction (SPE), mixed-mode LC, triple quadrupole MS with positive electrospray ionization (ESI), and a suite of stable isotope standards (, one per target compound) to correct for ion suppression by salts and organic matter, SPE losses, and instrument variability.

View Article and Find Full Text PDF

Introduction: Infants born very preterm (VPT, <32 weeks' gestation) are at increased risk for neurodevelopmental impairments including motor, cognitive and behavioural delay. Parents of infants born VPT also have poorer mental health outcomes compared with parents of infants born at term.We have developed an intervention programme called TEDI-Prem (Telehealth for Early Developmental Intervention in babies born very preterm) based on previous research.

View Article and Find Full Text PDF

Stenosis causes the narrowing of arteries due to plaque buildup, which impedes blood flow and affects flow dynamics. This work numerically analyzes flow fluctuations in stenosed arteries under realistic physiological conditions (resting and exercise) and external body acceleration. The artery is inclined at angle , and blood rheology is modeled using a generalized power-law fluid.

View Article and Find Full Text PDF

Among the numerous measurements carried out during a well-logging procedure, the Nuclear Magnetic Resonance (NMR) assessment is one of the fundamental analyses in determining the economic viability of a well for the oil industry. Nowadays, two reliable approaches, Wireline Logging (WL) and Logging While Drilling (LWD), stand out. WL comprises the acquisition of NMR data under static conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!