Improving the performance of kesterite solar cells requires high-quality, defect-free CZTS(Se) films with a reduced number of secondary phases and impurities. Post-annealing of the CZTS films at high temperatures in a sulfur or selenium atmosphere is commonly used to improve the quality of the absorbing material. However, annealing at high-temperatures can promote material decomposition, mainly due to the loss of volatile elements such as tin or sulfur. In this work, we investigate how the additional step of sulfurization at reduced temperatures affects the quality and performance of CZTSSe based solar cells. A comprehensive structural analysis using conventional and high resolution XRD as well as Raman spectroscopy revealed that the highest CZTSSe material quality with the lowest structural disorder and defect densities was obtained from the CZTS films pre-sulfurized at 420 °C. Furthermore, we demonstrate the possibility of using SbSe as a buffer layer in the superstrate configuration of CZTSSe solar cells, which is possible alternative to replace commonly employed toxic CdS as a buffer layer. We show that the additional low-temperature selenization process and the successful use of SbSe as a buffer layer could improve the performance of CZTSSe-based solar cells by up to 3.48%, with an average efficiency of 3.1%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9519875 | PMC |
http://dx.doi.org/10.1038/s41598-022-20670-1 | DOI Listing |
J Am Chem Soc
January 2025
College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
The ground-state charge generation (GSCG) in photoactive layers determines whether the photogenerated carriers occupy the deep trap energy levels, which, in turn, affects the device performance of organic solar cells (OSCs). In this work, charge-quadrupole electrostatic interactions are modulated to achieve GSCG through a molecular strategy of introducing different numbers of F atom substitutions on the BTA3 side chain. The results show that 8F substitution (BTA3-8F) and 16F substitution (BTA3-16F) lead to different patterns of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy level changes.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
i-Lab & Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences(CAS), Suzhou, 215123, P. R. China.
The conductivity of AgNWs electrodes can be enhanced by incorporating Ag grids, thereby facilitating the development of large-area flexible organic solar cells (FOSCs). Ag grids from vacuum evaporation offer the advantages of simple film formation, adjustable thickness, and unique structure. However, the complex 3D multi-component structure of AgNWs electrodes will exacerbate the aggregation of large Ag particles, causing the device short circuits.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
Most current highly efficient organic solar cells utilize small molecules like Y6 and its derivatives as electron acceptors in the photoactive layer. In this work, a small molecule acceptor, SC8-IT4F, is developed through outer side chain engineering on the terminal thiophene of a conjugated 6,12-dihydro-dithienoindeno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (IDTT) central core. Compared to the reference molecule C8-IT4F, which lacks outer side chains, SC8-IT4F displays notable differences in molecule geometry (as shown by simulations), thermal behavior, single-crystal packing, and film morphology.
View Article and Find Full Text PDFAdv Mater
January 2025
Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
Porous lead iodide (PbI) film is crucial for the complete reaction between PbI and ammonium salts in sequential-deposition technology so as to achieve high crystallinity perovskite film. Herein, it is found that the tensile stress in tin (IV) oxide (SnO) electron transport layer (ETL) is a key factor influencing the morphology and crystallization of PbI films. Focusing on this, lithium trifluoromethanesulfonate (LiOTf) is used as an interfacial modifier in the SnO/PbI interface to decrease the tensile stress to reduce the necessary critical Gibbs free energy for PbI nuclei formation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Advanced Materials (INAM), Universitat Jaume I, Av. Vicent Sos Baynat, s/n, 12071 Castellón de la Plana, Spain.
High defect concentrations at the interfaces are the basis of charge extraction losses and instability in perovskite solar cells. Surface engineering with organic cations is a common practice to solve this issue. However, the full implications of the counteranions of these cations for device functioning are often neglected.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!