Increased myelination plays a central role in white matter neuroplasticity.

Neuroimage

BrainNET, Health and Technology District, Vancouver, Canada; Faculty of Applied Sciences, Simon Fraser University, Burnaby, Canada; Department of Research and Evaluation Services and Surrey Memorial Hospital, Fraser Health Authority, Surrey, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada. Electronic address:

Published: November 2022

White matter (WM) neuroplasticity in the human brain has been tracked non-invasively using advanced magnetic resonance imaging techniques, with increasing evidence for improved axonal transmission efficiency as a central mechanism. The current study is the culmination of a series of studies, which characterized the structure-function relationship of WM transmission efficiency in the cortico-spinal tract (CST) during motor learning. Here, we test the hypothesis that increased transmission efficiency is linked directly to increased myelination using myelin water imaging (MWI). MWI was used to evaluate neuroplasticity-related improvements in the CST. The MWI findings were then compared to diffusion tensor imaging (DTI) results, with the secondary hypothesis that radial diffusivity (RD) would have a stronger relationship than axial diffusivity (AD) if the changes were due to increased myelination. Both MWI and RD data showed the predicted pattern of significant results, strongly supporting that increased myelination plays a central role in WM neuroplasticity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2022.119644DOI Listing

Publication Analysis

Top Keywords

increased myelination
16
transmission efficiency
12
myelination plays
8
plays central
8
central role
8
white matter
8
matter neuroplasticity
8
increased
5
role white
4
neuroplasticity white
4

Similar Publications

In Vivo Imaging of Cobalt-Induced Ocular Toxicity in a Mouse Model.

Methods Protoc

January 2025

The Krieger Eye Research Laboratory, Bruce and Ruth Faculty of Medicine, Technion-Institute of Technology, Haifa 3525433, Israel.

Cobalt is a trace element, crucial for red blood cell formation and neurological function. Cobalt toxicity is often only diagnosed after severe manifestations, including visual impairment. We aimed to investigate whether optical coherence tomography (OCT) and magnetic resonance imaging (MRI) can effectively detect cobalt-induced ocular toxicity in a murine model.

View Article and Find Full Text PDF

Co-methylation networks associated with cognition and structural brain development during adolescence.

Front Genet

January 2025

Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): (Georgia State University, Georgia Institute of Technology, and Emory University), Atlanta, GA, United States.

Introduction: Typical adolescent neurodevelopment is marked by decreases in grey matter (GM) volume, increases in myelination, measured by fractional anisotropy (FA), and improvement in cognitive performance.

Methods: To understand how epigenetic changes, methylation (DNAm) in particular, may be involved during this phase of development, we studied cognitive assessments, DNAm from saliva, and neuroimaging data from a longitudinal cohort of normally developing adolescents, aged nine to fourteen. We extracted networks of methylation with patterns of correlated change using a weighted gene correlation network analysis (WCGNA).

View Article and Find Full Text PDF

Neuropathic pain is a pervasive health concern worldwide, posing significant challenges to both clinicians and neuroscientists. While acute pain serves as a warning signal for potential tissue damage, neuropathic pain represents a chronic pathological condition resulting from injury or disease affecting sensory pathways of the nervous system. Neuropathic pain is characterized by long-lasting ipsilateral hyperalgesia (increased sensitivity to pain), allodynia (pain sensation in response to stimuli that are not normally painful), and spontaneous unprovoked pain.

View Article and Find Full Text PDF

Background: Pediatric growth hormone deficiency (GHD) is a disease resulting from the impaired growth hormone-insulin-like growth factor-1 (GH-IGF-1) axis, but the effects of GHD on children's behavior and brain microstructural structure alterations have not yet been fully clarified. We aimed to investigate the quantitative profiles of gray matter and white matter in pediatric GHD using synthetic magnetic resonance imaging (MRI).

Methods: The data of 50 children with GHD and 50 typically developing (TD) children were prospectively collected.

View Article and Find Full Text PDF

Background: Following transection, nerve repair using the polylactic acid (PLA) conduit is an effective option. In addition, inosine treatment has shown potential to promote nerve regeneration. Therefore, this study aimed to investigate the regenerative potential of inosine after nerve transection and polylactic acid conduit repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!